...
首页> 外文期刊>Computer Modeling in Engineering & Sciences >Parallelized Implementation of the Finite Particle Method for Explicit Dynamics in GPU
【24h】

Parallelized Implementation of the Finite Particle Method for Explicit Dynamics in GPU

机译:GPU中显式动态的有限粒子方法的并行实施

获取原文
获取原文并翻译 | 示例
           

摘要

As a novel kind of particle method for explicit dynamics, the finite particle method (FPM) does not require the formation or solution of global matrices, and the evaluations of the element equivalent forces and particle displacements are decoupled in nature, thus making this method suitable for parallelization. The FPM also requires an acceleration strategy to overcome the heavy computational burden of its explicit framework for time-dependent dynamic analysis. To this end, a GPU-accelerated parallel strategy for the FPM is proposed in this paper. By taking advantage of the independence of each step of the FPM workflow, a generic parallelized computational framework for multiple types of analysis is established. Using the Compute Unified Device Architecture (CUDA), the GPU implementations of the main tasks of the FPM, such as evaluating and assembling the element equivalent forces and solving the kinematic equations for particles, are elaborated through careful thread management and memory optimization. Performance tests show that speedup ratios of 8, 25 and 48 are achieved for beams, hexahedral solids and triangular shells, respectively. For examples consisting of explicit dynamic analyses of shells and solids, comparisons with Abaqus using 1 to 8 CPU cores validate the accuracy of the results and demonstrate a maximum speed improvement of a factor of 11.2.
机译:作为一种用于显式动态的新型颗粒方法,有限粒子方法(FPM)不需要全局矩阵的形成或解决方案,并且元件等效力和颗粒位移的评估本质上脱钩,从而使该方法合适对于并行化。 FPM还需要加速策略来克服其明确框架的重大计算负担,以进行时间依赖的动态分析。为此,提出了本文提出了FPM的GPU加速平行策略。通过利用FPM工作流程的每个步骤的独立性,建立了用于多种分析的通用并行计算框架。使用计算统一设备架构(CUDA),通过仔细的线程管理和记忆优化来阐述FPM的主要任务的主要任务的GPU实现,例如评估和组装元件等效力并求解用于粒子的运动学方程。性能测试表明,对于梁,六面体固体和三角形壳,实现了8,25和48的加速比。例如,由外壳和固体的明确动态分析组成,使用1至8 CPU核心的与ABAQUS的比较验证了结果的准确性,并证明了11.2因子的最大速度提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号