首页> 外文期刊>Computer Modeling in Engineering & Sciences >Real-Time Hybrid Simulation of Seismically Isolated Structures with Full-Scale Bearings and Large Computational Models
【24h】

Real-Time Hybrid Simulation of Seismically Isolated Structures with Full-Scale Bearings and Large Computational Models

机译:全尺寸轴承和大型计算模型的地震隔离结构的实时混合模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model. The dynamic response of a seismically isolated structure depends on the combined characteristics of the ground motion, bearings, and superstructure. Therefore, dynamic full-scale system level tests of isolated structures under realistic dynamic loading conditions are desirable towards a holistic validation of this earthquake protection strategy. Moreover, bearing properties and their ultimate behavior have been shown to be highly dependent on rate-of-loading and scale size effects, especially under extreme loading conditions. Few laboratory facilities can test full-scale seismic isolation bearings under prescribed displacement and/or loading protocols. The adaptation of a full-scale bearing test machine for the implementation of real-time hybrid simulation is presented here with a focus on the challenges encountered in attaining reliable simulation results for large scale dynamic tests. These advanced real-time hybrid simulations of large and complex hybrid models with several thousands of degrees of freedom are some of the first to use high performance parallel computing to rapidly execute the numerical analyses. Challenges in the experimental setup included measured forces contaminated by delay and other systematic control errors in applying desired displacements. Friction and inertial forces generated by the large-scale loading apparatus can affect the accuracy of measured force feedbacks. Reliable results from real-time hybrid simulation requires implementation of compensation algorithms and correction of these various sources of errors. Overall, this research program confirms that real-time hybrid simulation is a viable testing method to experimentally assess the behavior of full-scale isolators while capturing interactions with the numerical models of the superstructure to evaluate system level and in-structure response.
机译:混合仿真可以是以满量程进行动态测试结构部件的成本有效的方法,同时通过与数值模型的交互捕获系统级响应。地震隔离结构的动态响应取决于地面运动,轴承和上部结构的组合特性。因此,在现实的动态负载条件下隔离结构的动态全尺度系统水平测试是为了实现这种地震保护策略的整体验证。此外,已经显示轴承性能及其最终行为高度依赖于载荷率和规模尺寸效应,尤其是在极端负载条件下。很少有实验室设施可以在规定的位移和/或装载方案下测试全尺寸的地震隔离轴承。这里介绍了用于实现实时混合模拟的全尺寸轴承测试机的适应性,专注于实现大规模动态测试的可靠模拟结果时遇到的挑战。这些高级实时混合模拟的大型和复杂的混合模型,具有几千点自由度是首先使用高性能并行计算来快速执行数值分析。实验设置中的挑战包括在施加所需位移时被延迟和其他系统控制误差污染的测量力。由大规模加载设备产生的摩擦和惯性力可以影响测量力反馈的准确性。实时混合仿真的可靠结果需要实现补偿算法和这些各种错误源的校正。总体而言,该研究方案证实,实时混合模拟是一种可行的测试方法,用于通过实验评估满量程隔离器的行为,同时捕获与上部结构的数值模型进行交互,以评估系统级别和结构响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号