...
首页> 外文期刊>Biomacromolecules >Influence of Cellulose Charge on Bacteria Adhesion and Viability to PVAm/CNF/PVAm-Modified Cellulose Model Surfaces
【24h】

Influence of Cellulose Charge on Bacteria Adhesion and Viability to PVAm/CNF/PVAm-Modified Cellulose Model Surfaces

机译:纤维素电荷对PVAM / CNF / PVAM改性纤维素模型表面的细菌粘附性和活力的影响

获取原文
获取原文并翻译 | 示例

摘要

A contact-active antibacterial approach based on the physical adsorption of a cationic polyelectrolyte onto the surface of a cellulose material is today regarded as an environment-friendly way of creating antibacterial surfaces and materials. In this approach, the electrostatic charge of the treated surfaces is considered to be an important factor for the level of bacteria adsorption and deactivation/killing of the bacteria. In order to clarify the influence of surface charge density of the cellulose on bacteria adsorption as well as on their viability, bacteria were adsorbed onto cellulose model surfaces, which were modified by physically adsorbed cationic polyelectrolytes to create surfaces with different positive charge densities. The surface charge was altered by the layer-by-layer (LbL) assembly of cationic polyvinylamine (PVAm)/anionic cellulose nanofibril/PVAm onto the initially differently charged cellulose model surfaces. After exposing the LbL-treated surfaces to Escherichia coli in aqueous media, a positive correlation was found between the adsorption of bacteria as well as the ratio of nonviable/viable bacteria and the surface charge of the LbL-modified cellulose. By careful colloidal probe atomic force microscopy measurements, it was estimated, due to the difference in surface charges, that interaction forces at least 50 nN between the treated surfaces and a bacterium could be achieved for the surfaces with the highest surface charge, and it is suggested that these considerable interaction forces are sufficient to disrupt the bacterial cell wall and hence kill the bacteria.
机译:目前,基于阳离子聚电解质的物理吸附到纤维素材料表面上的接触活性抗菌方法,作为产生抗菌表面和材料的环保方式。在这种方法中,处理过的表面的静电电荷被认为是细菌吸附和失活/杀伤细菌水平的重要因素。为了澄清纤维素对细菌吸附的影响以及它们的活力,将细菌吸附到纤维素模型表面上,该模型表面被物理吸附的阳离子聚电解质改性,以产生具有不同正电荷密度的表面。通过阳离子聚乙烯醇(PVAM)/阴离子纤维素纳米纤维/ PVAM的逐层(LBL)组件将表面电荷改变为最初不同的带电的纤维素模型表面。在将LBL处理的表面暴露于含水介质中的大肠杆菌之后,在细菌的吸附和非可行/可行的细菌和LBL改性纤维素的表面电荷之间发现阳性相关性。通过仔细的胶体探针原子力显微镜测量,估计由于表面电荷的差异,可以为具有最高表面电荷的表面实现处理表面和细菌之间的相互作用势至少50nn,并且它是建议这些相当大的相互作用力足以破坏细菌细胞壁,因此杀死细菌。

著录项

  • 来源
    《Biomacromolecules》 |2019年第5期|共9页
  • 作者单位

    KTH Royal Inst Technol Sch Engn Sci Chem Biotechnol &

    Hlth CBH Dept Fibre &

    Polymer Technol Teknikringen 56-58 S-10044 Stockholm Sweden;

    KTH Royal Inst Technol Sch Engn Sci Chem Biotechnol &

    Hlth CBH Dept Fibre &

    Polymer Technol Teknikringen 56-58 S-10044 Stockholm Sweden;

    KTH Royal Inst Technol Sch Engn Sci Chem Biotechnol &

    Hlth CBH Dept Fibre &

    Polymer Technol Teknikringen 56-58 S-10044 Stockholm Sweden;

    KTH Royal Inst Technol Sch Engn Sci Chem Biotechnol &

    Hlth CBH Dept Fibre &

    Polymer Technol Teknikringen 56-58 S-10044 Stockholm Sweden;

    KTH Royal Inst Technol Sch Engn Sci Chem Biotechnol &

    Hlth CBH Dept Fibre &

    Polymer Technol Teknikringen 56-58 S-10044 Stockholm Sweden;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号