首页> 外文期刊>Biomacromolecules >Light-Activated, Bioadhesive, Poly(2-hydroxyethyl methacrylate) Brush Coatings
【24h】

Light-Activated, Bioadhesive, Poly(2-hydroxyethyl methacrylate) Brush Coatings

机译:光活化,生物粘附,聚(2-羟乙基甲基丙烯酸甲酯)刷涂层

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Rapid adhesion between tissue and synthetic materials is relevant to accelerate wound healing and to facilitate the integration of implantable medical devices. Most frequently, tissue adhesives are applied as a gel or a liquid formulation. This manuscript presents an alternative approach to mediate adhesion between synthetic surfaces and tissue. The strategy presented here is based on the modification of the surface of interest with a thin polymer film that can be transformed on-demand, using UV-light as a trigger, from a nonadhesive into a reactive and tissue adhesive state. As a first proof-of-concept, the feasibility of two photoreactive, thin polymer film platforms has been explored. Both of these films, colloquially referred to as polymer brushes, have been prepared using surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-hydroxyethyl methacrylate (HEMA). In the first part of this study, it is shown that direct UV-light irradiation of PHEMA brushes generates tissue-reactive aldehyde groups and facilitates adhesion to meniscus tissue. While this strategy is very straightforward from an experimental point of view, a main drawback is that the generation of the tissue reactive aldehyde groups uses the 250 nm wavelength region of the UV spectrum, which simultaneously leads to extensive photodegradation of the polymer brush. The second part of this report outlines the synthesis of PHEMA brushes that are modified with 4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzoic acid (TFMDA) moieties. UV-irradiation of the TFMDA containing brushes transforms the diazirine moieties into reactive carbenes that can insert into C-H, N-H, and O-H bonds and mediate the formation of covalent bonds between the brush surface and meniscus tissue. The advantage of the TFMDA-modified polymer brushes is that these can be activated with 365 nm wavelength UV light, which does not cause photodegradation of the polymer films. While the work presented in this manuscript has used silicon wafers and fused silica substrates as a first proof-of-concept, the versatility of SI-ATRP should enable the application of this strategy to a broad range of biomedically relevant surfaces.
机译:组织和合成材料之间的快速粘附与加速伤口愈合相关,并促进植入医疗装置的整合。最常见的是,组织粘合剂作为凝胶或液体制剂施加。该稿件呈现了一种替代方法来介导合成表面和组织之间的粘附性。这里呈现的策略基于利用薄聚合物膜的感兴趣表面的修饰,该聚合物膜可以使用UV光作为触发来转化为触发,从非粘附到反应性和组织粘合状态。作为第一概念证明,已经探索了两个光反应性,薄聚合物膜平台的可行性。通过2-羟乙基甲基丙烯酸甲酯(HEMA)的表面引发的原子转移自由基聚合(Si-ATRP)制备这两种薄膜。在本研究的第一部分中,显示PHEMA刷的直接UV光照射产生组织反应性醛基,并促进对弯月面组织的粘附性。虽然该策略从实验性观察开始非常简单,但主要缺点是组织反应性醛基的产生使用UV光谱的250nm波长区域,同时导致聚合物刷的广泛光降解。本报告的第二部分概述了用4- [3-(三氟甲基)-3H-二嗪-3-基]苯甲酸(TFMDA)部分改性的PHEMA刷子的合成。含有TFMDA的刷子的紫外线辐射将二氮杂物部分转化为可插入C-H,N-H和O-H键的反应性碳酸盐中,并介导刷子表面和弯月面组织之间的共价键的形成。 TFMDA改性聚合物刷的优点是这些可以用365nm波长UV光激活,这不会引起聚合物膜的光降解。虽然本手稿中提出的工作用硅晶片和熔融二氧化硅基板作为第一概念证明,但Si-ATRP的多功能性应使得这种策略应用于广泛的生物学相关表面。

著录项

  • 来源
    《Biomacromolecules》 |2020年第1期|共10页
  • 作者单位

    Ecole Polytech Fed Lausanne Inst Mat Batiment MXD Stn 12 CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne Inst Bioengn Lab Biomech Orthoped CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne Inst Mat Batiment MXD Stn 12 CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne Inst Bioengn Lab Biomech Orthoped CH-1015 Lausanne Switzerland;

    Nanyang Technol Univ Sch Mat Sci &

    Engn 50 Nanyang Ave Singapore 639798 Singapore;

    Ecole Polytech Fed Lausanne Inst Mat Batiment MXD Stn 12 CH-1015 Lausanne Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号