...
首页> 外文期刊>BioSystems >Understanding how replication processes can maintain systems away from equilibrium using Algorithmic Information Theory
【24h】

Understanding how replication processes can maintain systems away from equilibrium using Algorithmic Information Theory

机译:使用算法信息论了解复制过程如何使系统保持平衡

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Replication can be envisaged as a computational process that is able to generate and maintain order far-from-equilibrium. Replication processes, can self-regulate, as the drive to replicate can counter degradation processes that impact on a system. The capability of replicated structures to access high quality energy and eject disorder allows Landauer's principle, in conjunction with Algorithmic Information Theory, to quantify the entropy requirements to maintain a system far-from-equilibrium. Using Landauer's principle, where destabilising processes, operating under the second law of thermodynamics, change the information content or the algorithmic entropy of a system by Delta H bits, replication processes can access order, eject disorder, and counter the change without outside interventions. Both diversity in replicated structures, and the coupling of different replicated systems, increase the ability of the system (or systems) to self-regulate in a changing environment as adaptation processes select those structures that use resources more efficiently. At the level of the structure, as selection processes minimise the information loss, the irreversibility is minimised. While each structure that emerges can be said to be more entropically efficient, as such replicating structures proliferate, the dissipation of the system as a whole is higher than would be the case for inert or simpler structures. While a detailed application to most real systems would be difficult, the approach may well be useful in understanding incremental changes to real systems and provide broad descriptions of system behaviour. (C) 2016 The Author. Published by Elsevier Ireland Ltd.
机译:可以将复制设想为一种能够生成和维持顺序远非平衡的计算过程。复制过程可以自我调节,因为复制驱动器可以抵抗影响系统的降级过程。复制结构获得高质量能量和喷射紊乱的能力使Landauer原理与算法信息论结合,可以量化熵的要求,以保持系统的非平衡状态。使用Landauer原理,其中不稳定过程在热力学第二定律下运行,通过Delta H位更改系统的信息内容或算法熵,复制过程无需外部干预即可访问顺序,弹出混乱并应对更改。复制结构的多样性以及不同复制系统的耦合都提高了系统(或多个系统)在不断变化的环境中自我调节的能力,因为适应过程选择了那些更有效地利用资源的结构。在结构级别上,由于选择过程将信息丢失降到最低,因此不可逆性也降到了最低。虽然可以说出现的每个结构在熵上都更有效,但随着此类复制结构的扩散,整个系统的耗散性比惰性或更简单的结构要高。尽管很难对大多数实际系统进行详细的应用,但该方法对于理解实际系统的增量更改并提供系统行为的广泛描述可能很有用。 (C)2016作者。由Elsevier Ireland Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号