...
首页> 外文期刊>BioSystems >Development of fractal kinetic theory for enzyme-catalysed reactions and implications for the design of biochemical pathways
【24h】

Development of fractal kinetic theory for enzyme-catalysed reactions and implications for the design of biochemical pathways

机译:分形动力学理论对酶催化反应的发展及其对生化途径设计的启示

获取原文
获取原文并翻译 | 示例

摘要

Recent evidence has shown that elementary bimolecular reactions under dimensionally-restricted conditions, such as those that might occur within cells when reactions are confined to two-dimensional membranes and one-dimensional channels, do not follow traditional mass-action kinetics, but fractal kinetics. The power-law formalism, which provides the context for examining the kinetics under these conditions, is used here to examine the implications of fractal kinetics in a simple pathway of reversible reactions. Startinig with elementary chemical kinetics, we proceed to characterise the equilibrium behaviour df a simple bimolecular reaction, derive a generalised set of conditions for microscopic reversibility, and develop the fractal kinetic rate law for a reversible Michaelis-Menten mechanism. Having established this fractal kinetic framework, we go on to analyse the steady-state behaviour and temporal response of a pathway characterised by both the fundamental and quasi-steady-state equations. These results are contrasted with those for the fundamental and quasi-steady-state equations based on traditional mass-action kinetics. Finally, we compare the accuracy of three local representations based on both fractal and mass-action kinetics. The results with fractal kinetics show that the equilibrium ratio is a function of the amount of material in a closed system, and that the principle of microscopic reversibility has a more general manifestation that imposes new constraints on the set of fractal kinetic orders. Fractal kinetics in a biochemical pathway allow an increase in flux to occur with less accumulation of pathway intermediates and a faster temporal response than is the case with traditional kinetics. These conclusions are obtained regardless of the level of representation considered. Thus, fractal kinetics provide a novel means to achieve important features of pathway design. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved. [References: 50]
机译:最近的证据表明,在尺寸受限条件下的基本双分子反应(例如,当反应局限于二维膜和一维通道时可能在细胞内发生的反应)不遵循传统的质量作用动力学,而是遵循分形动力学。幂律形式主义为检验在这些条件下的动力学提供了背景,这里用来检验分形动力学在可逆反应的简单路径中的含义。从基本化学动力学入手,我们继续刻画一个简单的双分子反应的平衡行为,得出微观可逆性的广义条件集,并为可逆米氏反应建立分形动力学速率定律。建立了这种分形动力学框架后,我们继续分析以基本方程和准稳态方程为特征的路径的稳态行为和时间响应。这些结果与基于传统质量作用动力学的基本方程和准稳态方程的结果相反。最后,我们根据分形动力学和质量作用动力学比较了三个局部表示的准确性。分形动力学的结果表明,平衡比是封闭系统中材料量的函数,微观可逆性原理具有更普遍的表现形式,对分形动力学阶数集施加了新的约束。与传统动力学相比,生化途径中的分形动力学使通量增加而途径中间体的积聚更少,时间响应更快。无论所考虑的代表性水平如何,都可以得出这些结论。因此,分形动力学提供了一种实现途径设计重要特征的新颖手段。 (C)1998 Elsevier Science Ireland Ltd.保留所有权利。 [参考:50]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号