...
首页> 外文期刊>Chemical geology >Carbon dioxide and dissolution rate dynamics within a karst underflow-overflow system, Savoy Experimental Watershed, Arkansas, USA
【24h】

Carbon dioxide and dissolution rate dynamics within a karst underflow-overflow system, Savoy Experimental Watershed, Arkansas, USA

机译:喀斯特下溢流系统中的二氧化碳和溶解速率动态,萨沃伊实验水域,美国阿肯色州

获取原文
获取原文并翻译 | 示例

摘要

Within numerical models of karst development, geochemical and hydrological boundary conditions are typically assumed to be constant. However, rates of calcite dissolution in natural karst systems can vary substantially in time. In particular, variation in carbon dioxide (CO2) concentrations has been shown to produce time variability in dissolution rates in karst streams, but controls on CO2 variation within karst systems are relatively poorly quantified. Here we analyze hourly in-situ measurements of dissolved CO2, discharge, and specific conductance at a pair of karst underflow-overflow springs and examine potential drivers of variability in CO2 and dissolution rates. The springs display strong seasonal variability in CO2 and saturation state as well as moderate variation during storm events. Though both springs have elevated CO2 concentrations in the summer season, the overflow spring experiences a substantial decrease in dissolved CO2 below a critical discharge threshold. We hypothesize that this decrease results from ventilation within the overflow portion of the system as segments of the flow path transition from full pipe to open channel flow. The overflow spring experiences substantially lower average dissolution rates than the underflow spring, despite larger discharge and chemical variability during high flow events at the overflow spring. Though open systems are frequently presumed to have higher dissolution rates, because of their ability to replenish CO2 that is consumed in the dissolution process, these data suggest that dissolution rates within the closed portion of the system may in some cases be higher due to the inability of closed flow paths to ventilate excess CO2 to the atmosphere. Such conditions are likely to occur in conduits where CO2 concentrations are elevated above atmospheric levels and average flow through times are short compared to the time scale over which water reaches equilibrium with respect to calcite.
机译:在岩溶发展的数值模型中,通常假设地球化学和水文边界条件是恒定的。然而,天然岩溶系统中的方解石溶解率可以基本上变化。特别地,已显示二氧化碳(CO 2)浓度的变化在喀斯特流中产生溶出速率的时间可变性,但喀斯特系统内的CO 2变异的对照量相对差。在这里,我们在一对喀斯特溢流溢流弹簧处分析每小时的溶解二氧化碳,放电和特定电导,并检查二氧化碳和溶出速率的潜在驱动因素。 SPRINGS在CO2和饱和状态下显示出强烈的季节性变异性,以及风暴事件期间的中等变化。虽然两个弹簧在夏季都有高升高的CO2浓度,但溢流弹簧经历溶解的二氧化碳的实质性降低低于临界放电阈值。我们假设该减少从系统的溢流部分内的通风产生导致从全管以打开通道流的流动路径过渡的段。溢流弹簧经历比下溢弹簧的平均溶解率大得多,尽管在溢流弹簧的高流动事件中放大和化学变异性更大。虽然开放系统经常被假定具有更高的溶解速率,但由于它们能够补充溶出过程中消耗的CO2,因此这些数据表明系统内闭合部分内的溶出速率可能在某些情况下由于无法永久性而更高闭合的流动路径向大气通风过量的二氧化碳。这种条件可能发生在导管中,其中CO 2浓度高于大气水平,并且通过时间尺度相比,通过时间缩小的时间速度越短而平均流量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号