...
首页> 外文期刊>Chemical geology >Environmental controls on mid-ocean ridge hydrothermal fluxes
【24h】

Environmental controls on mid-ocean ridge hydrothermal fluxes

机译:中海岭水热通量的环境控制

获取原文
获取原文并翻译 | 示例

摘要

High temperature hydrothermal fluxes at mid-ocean ridges are thought to be an important component of oceanic biogeochemical cycles. However, little consideration has been given to how these fluxes vary as a consequence of changing environmental conditions over Earth history. Here we consider how changes in sea level and ocean chemistry are likely to have impacted on-axis, high-temperature, hydrothermal fluxes focusing on Phanerozoic conditions. Changes in sea level lead to changes in hydrostatic pressure near the base of hydrothermal systems where both peak fluid-rock reaction temperatures and phase separation occur. In general, higher global sea level will lead to higher peak temperatures of fluid-rock reaction. Additionally, phase separation at higher pressure tends to lead to formation of a more Cl-rich vapor, that constitutes a larger mass fraction of the system. These combined factors may serve to significantly modify hydrothermal fluxes even for sea level changes on the scale of 100 m. Changes in ocean chemistry can also affect axial hydrothermal fluxes in several ways. Seawater sulfate contents control the amount of anhydrite that forms, which has both physical (porosity filling) and chemical effects. The most important aspect of ocean chemistry in controlling the composition of high-temperature vent fluids may be ocean salinity. If evaporite formation and dissolution has changed ocean salinity substantially over the Phanerozoic, hydrothermal fluxes could have been greatly modified. Ocean chemistry also plays a large role in controlling processes operating in hydrothermal plumes and hence the net flux of elements into and out of the ocean associated with hydrothermal systems. We conclude that there is a need for substantial further work to quantify the effects of sea level and ocean chemistry on high-temperature hydrothermal fluxes, including the development of more robust models that integrate field, laboratory and theoretical observations.
机译:中海脊的高温水热通量被认为是海洋生物地球化学循环的重要组成部分。然而,由于在地球历史上不断变化环境条件,这些助势如何变化很少考虑。在这里,我们考虑海平面和海洋化学的变化可能会影响轴上,高温,热热量,重点是在北古代条件上。海平面的变化导致水液压压力变化附近的水热系统底部发生峰值流体岩体反应温度和相分离。通常,较高的全球海平将导致流体岩石反应的较高峰值温度。另外,在较高压力下的相分离倾向于导致形成更富含Cl的蒸气,其构成系统的较大质量分数。这些组合因素可用于显着改变水热量,即使对于海平面为100米的平面变化也是如此。海洋化学的变化也可以通过几种方式影响轴向水热量。海水硫酸盐含量控制形式的无水石量,其具有物理(孔隙率填充)和化学效果。控制高温通气流体组成的海洋化学最重要的方面可能是海洋盐度。如果蒸发产物形成和溶解在基本上变过了正交的海洋盐,则可以大大修饰水热量。海洋化学也在控​​制水热羽毛中操作的过程中起着很大的作用,从而在与水热系统相关的内容中的元素的净通量。我们得出结论,需要大量进一步的工作,以量化海平和海洋化学对高温水热量的影响,包括开发更强大的模型,可以整合现场,实验室和理论观察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号