首页> 外文期刊>Chinese Journal of Physics >Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: Effects of a heat sink and source size and location
【24h】

Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: Effects of a heat sink and source size and location

机译:倾斜方孔腔中纳米流体的熵生成和MHD自然对流:散热器和源极尺寸和位置的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The effects of a heat sink and the source size and location on the entropy generation, MHD natural convection flow and heat transfer in an inclined porous enclosure filled with a Cu-water nanofluid are investigated numerically. A uniform heat source is located in a part of the bottom wall, and a part of the upper wall of the enclosure is maintained at a cooled temperature, while the remaining parts of these two walls are thermally insulated. Both the left and right walls of the enclosure are considered to be adiabatic. The thermal conductivity and the dynamic viscosity of the nanofluid are represented by different verified experimental correlations that are suitable for each type of nanoparticle. The finite difference methodology is used to solve the dimensionless partial differential equations governing the problem. A comparison with previously published works is performed, and the results show a very good agreement. The results indicate that the Nusselt number decreases via increasing the nanofluid volume fraction as well as the Hartmann number. The best location and size of the heat sink and the heat source considering the thermal performance criteria and magnetic effects are found to be D = 0.7 and B = 0.2. The entropy generation, thermal performance criteria and the natural heat transfer of the nanofluid for different sizes and locations of the heat sink and source and for various volume fractions of nanoparticles are also investigated and discussed.
机译:在数值上研究了散热器和源极尺寸和位置对填充有Cu水纳米流体的倾斜多孔外壳中的MHD自然对流流和热传递的影响。均匀的热源位于底壁的一部分中,并且外壳的上壁的一部分保持在冷却的温度下,而这两个壁的剩余部分是热绝缘的。外壳的左右墙都被认为是绝热的。纳米流体的导热率和动态粘度由适用于每种类型的纳米颗粒的不同验证的实验相关性表示。有限差异方法用于解决有限的局部差分方程。执行与先前发布的作品的比较,结果表明了非常良好的一致性。结果表明,通过增加纳米流体体积分数以及Hartmann数,尤塞格数减少。考虑热性能标准和磁效应的散热器和热源的最佳位置和大小被发现为D = 0.7和B = 0.2。还研究了熵生成,热性能标准,纳米流体的不同尺寸和散热器和源极和纳米粒子的各种体积分数的自然传热和纳米颗粒的固定性传热。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号