首页> 外文期刊>ChemSusChem >Small Current but Highly Productive Synthesis of 1,3-Propanediol from Glycerol by an Electrode-Driven Metabolic Shift in Klebsiella pneumoniae L17
【24h】

Small Current but Highly Productive Synthesis of 1,3-Propanediol from Glycerol by an Electrode-Driven Metabolic Shift in Klebsiella pneumoniae L17

机译:通过电极驱动的代谢移位在Klebsiella Pneumoniae L17的电极驱动的代谢移位小电流但高效合成1,3-丙二醇的来自甘油

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Electrofermentation actively regulates the bacterial redox state, which is essential for bioconversion and has been highlighted as an effective method for further improvements of the productivity of either reduced or oxidized platform chemicals. 1,3-Propanediol (1,3-PDO) is an industrial value-added chemical that can be produced from glycerol fermentation. The bioconversion of 1,3-PDO from glycerol requires additional reducing energy under anoxic conditions. The cathode-based conversion of glycerol to 1,3-PDO with various electron shuttles (2-hydroxy-1,4-naphthoquinone, neutral red, and hydroquinone) using Klebsiella pneumoniae L17 was investigated. The externally poised potential of -0.9 V vs. Ag/AgCl to the cathode increased 1,3-PDO (35.5 +/- 3.1 mm) production if 100 mu m neutral red was used compared with non-bioelectrochemical system fermentation (23.7 +/- 2.4 mm). Stoichiometric metabolic flux and transcriptional analysis indicated a shift in the carbon flux toward the glycerol reductive pathway. The homologous overexpression of glycerol dehydratase (DhaB) and 1,3-PDO oxidoreductase (DhaT) enzymes synergistically enhanced 1,3-PDO conversion (39.3 +/- 0.8 mm) under cathode-driven fermentation. Interestingly, a small current uptake (0.23 mmol of electrons) caused significant metabolic flux changes with a concomitant increase in 1,3-PDO production. This suggests that both an increase in 1,3-PDO production and regulation of the cellular metabolic pathway are feasible by electrode-driven control in cathodic electrofermentation.
机译:电代置地积极调节细菌氧化还原状态,这对于生物转化至关重要,并被强调为进一步改善减少或氧化平台化学品的生产率的有效方法。 1,3-丙二醇(1,3-PDO)是一种工业增值化学品,可以由甘油发酵制备。来自甘油的1,3-Pdo的生物转化需要在缺氧条件下额外的降低能量。研究了甘油至1,3-PDO的基于阴极的转化与各种电子班车(2-羟基-1,4-萘醌,中性红色和氢醌)使用Klebsiella肺炎群L17进行了研究。如果使用100μm中性红色,则在与非生物电化学系统发酵相比(23.7 + / - 2.4 mm)。化学计量代谢通量和转录分析表明碳通量朝向甘油还原途径的转变。甘油脱水酶(DHAB)和1,3-PDO氧化还原酶(DHAT)酶的同源过表达在阴极驱动的发酵下协同增强1,3-PDO转化(39.3 +/- 0.8mm)。有趣的是,小型电流摄取(0.23mmol电子)引起了1,3-PDO生产的伴随增加了显着的代谢通量变化。这表明1,3-PDO生产和细胞代谢途径的调节既可通过在阴极电器上的电极驱动控制是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号