首页> 外文期刊>Chemical science >Millisecond lifetime imaging with a europium complex using a commercial confocal microscope under one or two-photon excitation
【24h】

Millisecond lifetime imaging with a europium complex using a commercial confocal microscope under one or two-photon excitation

机译:在一个或二光子励磁下使用商用共聚焦显微镜,使用铕综合体毫秒寿命成像

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The long luminescence lifetime of lanthanide based bioprobes is a great advantage for their specific detection in autofluorescent or labelled cells and tissues. It is also a valuable tool for sensing the physicochemical microenvironment and molecular interactions by Forster resonance energy transfer (FRET). However, standard confocal and multiphoton laser scanning microscopes are not adapted for imaging with such temporal resolution, because the typical pixel dwell time is too short compared to the luminescence lifetime. We show that the rapid sampling rate and laser control of a usual confocal microscope can instead be used for precise measurement of long lifetime decays (μs to ms range). Furthermore, both raster- and line-scanning microscopes can specifically detect long luminescence signals in the time-gated mode by shifting the pinhole or the confocal slit in the lagging direction. We characterized the subcellular localization and accurately measured the millisecond luminescence lifetimes of the benchmark two-photon europium probe [Na]3[EuL~(1G)3], and specifically imaged this label in the presence of short-lived fluorescent species. Fine variations of the luminescence lifetime of this lanthanide complex were revealed and mapped in cells in the presence of a FRET acceptor, allowing quantification of the FRET efficiency independently of donor concentration. These results demonstrate a high and yet unexploited potential of quantitative confocal and multiphoton microscopy for time-gated and lifetime imaging of lanthanide-based biological sensors.
机译:基于镧系生物软管的长发光寿命是它们在自发荧光或标记细胞和组织中的特异性检测的一个很大的优势。它也是一种有价值的工具,用于感测孔口共振能量转移(FRET)的物理化学微环境和分子相互作用。然而,标准的共焦和多光子激光扫描显微镜不适用于具有这种时间分辨率的成像,因为与发光寿命相比,典型的像素停留时间太短。我们表明,通常的共聚焦显微镜的快速采样率和激光控制可以用于精确测量长寿衰减(μs至MS范围)。此外,光栅和线扫描显微镜都可以通过在滞后方向上移位针孔或共聚焦狭缝来具体地检测时间门控模式的长发光信号。我们以亚细胞定位特征,并准确地测量基准二光子铕探针[Na] 3 [Eul〜(1g)3]的毫秒发光寿命,并在短寿命荧光物质存在下具体成像该标签。在FRET受体存在下揭示并映射到细胞中该镧系元素络合物的发光寿命的微小变次,允许与供体浓度不同的质量效率进行定量。这些结果表明了用于基于镧系生物传感器的时间门控和寿命成像的定量辅作和多光子显微镜的高且不开的潜力。

著录项

  • 来源
    《Chemical science》 |2014年第9期|共11页
  • 作者单位

    INSERM MB F-38000 Grenoble France;

    University Lyon 1 ENS Lyon CNRS UMR 5182 46 allee d'Italie 69364 Lyon France.;

    University Lyon 1 ENS Lyon CNRS UMR 5182 46 allee d'Italie 69364 Lyon France.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号