...
首页> 外文期刊>Chemical Engineering Research & Design: Transactions of the Institution of Chemical Engineers >On the use of 3D-printed flow distributors to control particle movement in a fluidized bed
【24h】

On the use of 3D-printed flow distributors to control particle movement in a fluidized bed

机译:在使用3D印刷流量分配器来控制流化床中的颗粒运动

获取原文
获取原文并翻译 | 示例

摘要

3D-printing has emerged as a revolutionary tool for the rapid-prototyping of both conventional and novel products. Its use can foster innovative solutions to engineering challenges that previously would have been considered impractical. We propose the manipulation and control of multiphase systems (e.g. fluidized bed bioreactors) as one such use. The article presented investigates the particle flow and mixing within a fluidized bed induced by novel additive manufactured flow distributors. The fluidized bed is designed for adherent cell expansion on 3 mm diameter calcium alginate macrocarriers. Particle tracking was employed to assess the influence of flow channel angle and direction upon the radial flux of the carriers within the vessel. Uni-directional angled (45) flow channels generated swirling fluidization of the macrocarriers; increasing particle radial velocities by up to 5.2 times (compared to their vertical flow channel counterparts) at a liquid superficial velocity of 0.0047 m/s. Swirling fluidization also generated particle bed heights up to 52% higher than vertical flow channels. Bi-directional flow channels improved the spatial uniformity of particle radial velocity. In addition, the angular flow channels generated axial velocity gradients that facilitate fluctuations in the height of fluidized particles, thus counteracting elutriation. Finally, lower liquid flow rates and interstitial velocities were required to mix the particles, thus leading to lower hydrodynamic stresses introduced into the system. The introduction of multi-directional flow channels provides novel options to the design and use of flow distributor technology. We foresee additional advancements in chemical engineering product design utilizing additive manufacturing to manipulate multiphase flows. (C) 2018 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
机译:3D-Printing已成为常规和新产品的快速原型设计的革命性工具。它的使用可以促进创新的解决方案,以实现以前被认为是不切实际的工程挑战。我们提出了一种操纵和控制多相体系(例如流化床生物反应器)作为一种这种用途。本文提出了通过新型添加剂制造的流量分配器诱导的流化床内​​的颗粒流动和混合。流化床设计用于3mm直径的藻酸钙癌丙骨载体上的粘附细胞膨胀。采用粒子跟踪来评估流动通道角和方向对容器内载体的径向通量的影响。单向角度(45)流动通道产生宏括号的旋转流化;将粒子径向速度增加至多5.2倍(与其垂直流动通道对应物相比),液体浅表速度为0.0047m / s。旋流流化也产生颗粒床高度高于垂直流动通道的52%。双向流动通道提高了颗粒径向速度的空间均匀性。另外,角度流动通道产生了促进流化颗粒高度的波动的轴向速度梯度,从而抵消了抗腐蚀。最后,需要降低液体流速和间质速度来混合颗粒,从而导致较低的流体动力应力引入系统中。引入多向流动通道为流动分配器技术的设计和使用提供了新颖的选择。我们预计利用添加剂制造来操纵多相流的化学工程产品设计的额外进步。 (c)2018化学工程师机构。 elsevier b.v出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号