首页> 外文期刊>Chemical Engineering Research & Design: Transactions of the Institution of Chemical Engineers >Numerical analysis of dilute gas-solid flows in a horizontal pipe and a 90 degrees bend coupled with a newly developed drag model
【24h】

Numerical analysis of dilute gas-solid flows in a horizontal pipe and a 90 degrees bend coupled with a newly developed drag model

机译:水平管中稀释气体流动的数值分析,90度弯曲与新开发的拖曳模型相结合

获取原文
获取原文并翻译 | 示例
           

摘要

The influence of particle concentration on the drag force of a particle deserves attention when using the Lagrangian Particle Tracking methods for the prediction of industrial type gas-solid flows. The Lagrangian approach is best suited to applications where the solids volume fraction is low, and the effect of particle concentration can be ignored. In the present work, a 3D time dependent numerical analysis is performed to study the effect of Lagrangian model improvements to replicate experimental studies of straight horizontal pipe flow and flow through a 90 horizontal-to-vertical bend. The present predictions are compared with published experimental data of Tsuji and Morikawa (1982), and Yernaz (1994 Special attention is paid to influence of particle mass-flow rates and conveying velocity on the particle motion within the system. This study used a CFX-4 package, where the ability to modify the code was necessary to include particle model improvements. These improvements included implementing a newly drag force model developed as a part of this research work. Particle wall collision and particle-particle collision models developed by Sommerfeld (1992), and Sommerfeld (2001) are also implemented in the CFD model. The standard k-epsilon dispersed turbulence model was utilized as the predictions for the gas phase only gave similar predicted axial velocity compared to the more computationally demanding Reynolds stress model. The results showed that the inclusion of the various improvements lead to reasonable predicted particle velocities in both the upper and lower regions of the straight horizontal pipe which denote the dilute and dense regions respectively. It was also found that the inclusion of the rough-wall particle wall collision model decreases the axial particle velocity in the lower region where the bulk of the particle wall collisions occur. While the inclusion of the particle collision models tends to disperse the particles away from the lower region resulting in a less dense lower section and a distinctly more homogenous particle distribution compared with the standard model predictions. Further, the increase in particle concentration leads to a reduction in axial velocity due to a loss of momentum through particle-wall and particle-particle collisions. Finally, the improved CFD model best predicted both the reduction and increase in the particle velocities in the different regions. (C) 2020 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
机译:颗粒浓度对颗粒拖曳力的影响值得关注使用拉格朗日颗粒跟踪方法,以预测工业型气固流动。拉格朗日方法最适合于固体体积分数低的应用,并且可以忽略颗粒浓度的效果。在本作本作中,执行3D时间依赖性数值分析,以研究拉格朗日模型改进的效果,以复制直的水平管流量的实验研究,并流过90水平到垂直弯曲。将目前的预测与Tsuji和Morikawa(1982)公布的实验数据进行了比较,而Yernaz(1994年特别注意粒子质量流量的影响以及输送系统内的粒子运动。该研究使用了CFX- 4套餐,其中改变代码的能力是必要的,包括粒子模型改进。这些改进包括实施作为本研究工作的一部分开发的新拖曳力模型。Sommerfeld开发的粒子壁碰撞和粒子粒子碰撞模型(1992年),Sommerfeld(2001)也在CFD模型中实施。与更加计算要求苛刻的Reynolds应力模型相比,使用标准的K-Epsilon分散的湍流模型作为气相的预测仅产生了类似的预测轴向速度。结果表明,包括各种改进导致上下区域的合理预测颗粒速度直线管的S分别表示稀释和致密的区域。还发现包含粗壁颗粒壁碰撞模型的载体血管在颗粒壁碰撞中的下部区域中的轴向粒子速度降低。虽然包含颗粒碰撞模型倾向于将颗粒远离下部区域分散,导致与标准模型预测相比的较小致密的下部和明显更均匀的颗粒分布。此外,由于颗粒壁和颗粒颗粒碰撞的损失,颗粒浓度的增加导致轴向速度的降低。最后,改进的CFD模型最能预测不同地区的颗粒速度的减小和增加。 (c)2020化学工程师机构。 elsevier b.v出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号