首页> 外文期刊>Chemical Society Reviews >Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks
【24h】

Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks

机译:来自溶液加工纳米粒子构建块的热电纳米材料和器件的自下而上的工程

获取原文
获取原文并翻译 | 示例
           

摘要

The conversion of thermal energy to electricity and vice versa by means of solid state thermoelectric devices is extremely appealing. However, its cost-effectiveness is seriously hampered by the relatively high production cost and low efficiency of current thermoelectric materials and devices. To overcome present challenges and enable a successful deployment of thermoelectric systems in their wide application range, materials with significantly improved performance need to be developed. Nanostructuration can help in several ways to reach the very particular group of properties required to achieve high thermoelectric performances. Nanodomains inserted within a crystalline matrix can provide large charge carrier concentrations without strongly influencing their mobility, thus allowing to reach very high electrical conductivities. Nanostructured materials contain numerous grain boundaries that efficiently scatter mid-and long-wavelength phonons thus reducing the thermal conductivity. Furthermore, nanocrystalline domains can enhance the Seebeck coefficient by modifying the density of states and/or providing type-and energy-dependent charge carrier scattering. All these advantages can only be reached when engineering a complex type of material, nanocomposites, with exquisite control over structural and chemical parameters at multiple length scales. Since current conventional nanomaterial production technologies lack such level of control, alternative strategies need to be developed and adjusted to the specifics of the field. A particularly suitable approach to produce nanocomposites with unique level of control over their structural and compositional parameters is their bottom-up engineering from solution-processed nanoparticles. In this work, we review the state-of-the-art of this technology applied to the thermoelectric field, including the synthesis of nanoparticles of suitable materials with precisely engineered composition and surface chemistry, their combination and consolidation into nano-structured materials, the strategies to electronically dope such materials and the attempts to fabricate thermoelectric devices using nanoparticle-based nanopowders and inks.
机译:通过固态的热电装置将热能转换为电力,反之亦然是非常有吸引力的。然而,其成本效益受到相对较高的生产成本和电流热电材料和设备的低效率的严重阻碍。为了克服当前的挑战并使热电系统在广泛的应用范围内成功部署,需要显着提高性能的材料。纳米结构可以有助于达到实现高热电性能所需的非常特定的性能组。插入结晶基质内的纳米型可以提供大的电荷载体浓度,而不会强烈影响其迁移率,从而允许达到非常高的电导率。纳米结构材料含有许多晶界,可有效地散射中间和长波长声子,从而降低导热率。此外,通过修改状态的密度和/或提供类型和能量相关的电荷载波散射,纳米晶域可以增强塞贝克系数。只有在工程复杂类型的材料纳米复合材料时才能达到所有这些优点,并且在多长度尺度上对结构和化学参数的精确控制。由于目前的常规纳米材料生产技术缺乏这种控制水平,因此需要开发和调整替代策略并调整该领域的具体情况。一种特别合适的方法来生产具有独特控制水平的纳米复合材料,其结构和组成参数是它们从溶液加工纳米颗粒的自下而上的工程。在这项工作中,我们审查了应用于热电场的技术的最先进,包括合成合适材料的纳米颗粒,具有精确的工程化组合物和表面化学,它们的组合和固结成纳米结构材料,用基于纳米粒子的纳米摩擦和油墨制造热电装置的电子涂料的策略和试图制造热电装置。

著录项

  • 来源
    《Chemical Society Reviews》 |2017年第12期|共19页
  • 作者单位

    Catalonia Inst Energy Res IREC Barcelona 08930 Spain;

    ETH Inst Inorgan Chem Dept Chem &

    Appl Biosci CH-8093 Zurich Switzerland;

    Catalonia Inst Energy Res IREC Barcelona 08930 Spain;

    Catalonia Inst Energy Res IREC Barcelona 08930 Spain;

    ETH Inst Inorgan Chem Dept Chem &

    Appl Biosci CH-8093 Zurich Switzerland;

    Catalonia Inst Energy Res IREC Barcelona 08930 Spain;

    Catalonia Inst Energy Res IREC Barcelona 08930 Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号