...
首页> 外文期刊>Cellulose >Thiol-branched graphene oxide and polydopamine-induced nanofibrillated cellulose to strengthen protein-based nanocomposite films
【24h】

Thiol-branched graphene oxide and polydopamine-induced nanofibrillated cellulose to strengthen protein-based nanocomposite films

机译:硫醇支化的石墨烯氧化物和聚二胺诱导的纳米纤化纤维素以加强蛋白质的纳米复合膜

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Soy protein isolate (SPI)-based composite materials possess a variety of excellent properties including biodegradability, biocompatibility, low cost, and easy availability, which have great potential for replacing petroleum-based materials. However, the inferior mechanical properties and high moisture sensitivity severely restrict their practical applications. In this study, novel integrated ternary hybrid nanocomposite films with multiple network structures were fabricated through introducing functionalized building blocks [graphene oxide (GO) sheets and nanofibrillated cellulose (NFC)] in a SPI matrix, in which, the interface interactions and building blocks worked synergistically to result in excellent integrated mechanical properties. First, the functionalized GO (SGO) sheets were successfully prepared via the thiol-ene click reaction with four-armed HS-terminated compound pentaerythritol tetra (3-mercaptopropionate) (PETMP) and were thus covalently cross-linked with catechol moieties of polydopamine layers on NFC (PNFC) by the Michael addition reaction. Then, the catechol moieties of PNFC covalently cross-linked to form the other crosslinked network with amino-containing SPI chains through Michael addition and/or Schiff base reactions. Moreover, H-bonding and -pi interactions also formed in such cross-linked networks. The resultant ternary SPI/SGO/PNFC films exhibited an optimal tensile strength of 11.10MPa, which was nearly 2.81-fold higher than that of the neat SPI film. These films had the lowest water vapor permeability value of 3.91, which was 64.70% less than that of the neat SPI film. This work provides an effective and scalable design strategy for combining the synergistic effects of multiple building blocks and interfacial interactions and may show promise for various biomass applications.
机译:大豆蛋白分离物(SPI)基于复合材料具有各种优异的性能,包括生物降解性,生物相容性,低成本和易于可用性,这具有替代石油基材料的巨大潜力。然而,劣质机械性能和高湿度敏感性严重限制了其实际应用。在该研究中,通过在SPI矩阵中引入官能化构建块[石墨烯氧化物(GO)片材和纳米纤维纤维素(NFC)],其中界面相互作用和建筑块工作,通过将具有多种网络结构的新型集成三元杂交纳米复合材料薄膜制备协同效应导致优异的综合机械性能。首先,通过硫醇-NEE点击与四臂HS-封端的化合物季戊四醇四(3-巯基丙酸酯)(PETMP)的反应成功制备官能化的GO(SGO)片,因此与多德莫胺层的儿茶酚部分共价交联通过迈克尔加成反应在NFC(PNFC)上。然后,PNFC的儿茶酚部分共价交联,以通过迈克尔添加和/或席夫碱反应形成与含氨基的SPI链的其他交联网络。此外,在这种交联网络中也形成了H键合和-PI相互作用。所得三元SPI / SGO / PNFC膜表现出11.10MPa的最佳拉伸强度,比纯净SPI膜的高度高2.81倍。这些薄膜的水蒸气渗透率最低为3.91,比整齐SPI膜的水蒸气渗透率值为3.91。这项工作提供了一种有效且可扩展的设计策略,用于组合多个构建块和界面交互的协同效应,并可能为各种生物量应用表明承诺。

著录项

  • 来源
    《Cellulose》 |2019年第12期|共14页
  • 作者单位

    Beijing Forestry Univ Coll Mat Sci &

    Technol Key Lab Wood Mat Sci &

    Utilizat Beijing Key Lab Wood Sci &

    Engn Minist Educ Beijing 100083 Peoples R China;

    Beijing Forestry Univ Coll Mat Sci &

    Technol Key Lab Wood Mat Sci &

    Utilizat Beijing Key Lab Wood Sci &

    Engn Minist Educ Beijing 100083 Peoples R China;

    Beijing Forestry Univ Coll Mat Sci &

    Technol Key Lab Wood Mat Sci &

    Utilizat Beijing Key Lab Wood Sci &

    Engn Minist Educ Beijing 100083 Peoples R China;

    Beijing Forestry Univ Coll Mat Sci &

    Technol Key Lab Wood Mat Sci &

    Utilizat Beijing Key Lab Wood Sci &

    Engn Minist Educ Beijing 100083 Peoples R China;

    Univ North Texas Dept Mech &

    Energy Engn Denton TX 76203 USA;

    Univ North Texas Dept Mech &

    Energy Engn Denton TX 76203 USA;

    Beijing Forestry Univ Coll Mat Sci &

    Technol Key Lab Wood Mat Sci &

    Utilizat Beijing Key Lab Wood Sci &

    Engn Minist Educ Beijing 100083 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 有机化学;
  • 关键词

    Soy protein isolate; Nanofibrillated cellulose; Graphene oxide; Click reaction; Michael addition; Schiff base reactions;

    机译:大豆蛋白分离物;纳米纤维纤维素;石墨烯氧化物;点击反应;迈克尔加法;席克夫基础反应;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号