...
首页> 外文期刊>Cellulose >In silico structure prediction of full-length cotton cellulose synthase protein (GhCESA1) and its hierarchical complexes
【24h】

In silico structure prediction of full-length cotton cellulose synthase protein (GhCESA1) and its hierarchical complexes

机译:在全长棉纤维素合酶蛋白(GHESA1)的硅结构预测中及其层级复合物

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Cellulose synthase (CESA) polymerizes glucose into beta-1,4-glucan chains that assemble to form cellulose microfibrils. Cellulose is the most abundant natural polymer in the world and a major structural component of the plant cell wall. An understanding of cellulose synthesis in plants is crucial for advancement in biofuels research and requires high-resolution 3D CESA structures. However, the determination of 3D structures of plant CESAs and their specific hierarchical arrangement into cellulose synthesis complexes (CSCs) has been a challenge. The prediction of CESA structures using computational methods presents a challenge due to poor sequence homology with resolved structures, long sequence, and structural complexity due to a mixture of globular, transmembrane, and intrinsically disordered regions. Herein, we present a 3D atomic-resolution model of a full-length (974-aa) cotton CESA (GhCESA1) structure using a variety of computational techniques with a reasonable ProSA-web z-score of - 8.32 (PDB available in SI). The overall fold of the CESA model indicates that there are similarities to BcsA bacterial cellulose synthase, such as the transmembrane topology and the internalization of conserved catalytic motifs. The plant-specific regions (CSR, P-CR, and N-term) fold into distinct subdomains, indicating the importance of these regions in CESA assembly into plant CSCs. We further examined possible assemblies of CESA monomers forming trimers and 18-mer CSCs, and we compared our results to those obtained by freeze fracture transmission electron microscopy. We observed that there are numerous competing ways in which CESAs may be arranged into homotrimers and CSCs. Our predicted structure can be used to probe CESA structure-activity relationships, select and subsequently test possible mutants, and investigate CESA aggregation into CSCs and microfibril formation to optimize biomass properties.
机译:纤维素合酶(CESA)将葡萄糖聚合成β-1,4-葡聚糖链,其组装以形成纤维素微纤维。纤维素是世界上最丰富的天然聚合物和植物细胞壁的主要结构部件。对植物纤维素合成的理解对于生物燃料研究的进步至关重要,并且需要高分辨率的3D CESA结构。然而,将植物CESAS的3D结构及其特定的分层布置的确定为纤维素合成复合物(CSCs)是挑战。由于球状,跨膜和本质上无序地区的混合物,使用计算方法预测使用计算方法的序列同源性,长序列和结构复杂性呈现挑战。这里,我们介绍了一种使用各种计算技术的全长(974-AA)棉CESA(GHESA1)结构的3D原子分辨率模型,其具有合理的PROSA-WEB Z分数 - 8.32(SI中可用的PDB) 。 CESA模型的总折叠表明,与BCSA细菌纤维素合成酶存在相似之处,例如跨膜拓扑和保守催化基序的内化。植物特异性地区(CSR,P-CR和N-TERM)折叠成不同的亚域,表明这些区域在CESA组装中的重要性进入植物CSCs。我们进一步研究了CESA单体的可能组装,形成了三聚体和18-MER CSC,并将我们的结果与冷冻骨折透射电子显微镜获得的结果进行了比较。我们观察到有许多竞争方式,其中CESAS可以被安排成同源体和CSC。我们的预测结构可用于探测CESA结构 - 活性关系,选择和随后测试可能的突变体,并研究CESA聚集到CSC和微纤维形成中以优化生物质性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号