...
【24h】

Cognitive swarming in complex environments with attractor dynamics and oscillatory computing

机译:具有吸引力动态和振荡计算的复杂环境中的认知蜂拥而至

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Neurobiological theories of spatial cognition developed with respect to recording data from relatively small and/or simplistic environments compared to animals’ natural habitats. It has been unclear how to extend theoretical models to large or complex spaces. Complementarily, in autonomous systems technology, applications have been growing for distributed control methods that scale to large numbers of low-footprint mobile platforms. Animals and many-robot groups must solve common problems of navigating complex and uncertain environments. Here, we introduce the NeuroSwarms control framework to investigate whether adaptive, autonomous swarm control of minimal artificial agents can be achieved by direct analogy to neural circuits of rodent spatial cognition. NeuroSwarms analogizes agents to neurons and swarming groups to recurrent networks. We implemented neuron-like agent interactions in which mutually visible agents operate as if they were reciprocally connected place cells in an attractor network. We attributed a phase state to agents to enable patterns of oscillatory synchronization similar to hippocampal models of theta-rhythmic (5–12?Hz) sequence generation. We demonstrate that multi-agent swarming and reward-approach dynamics can be expressed as a mobile form of Hebbian learning and that NeuroSwarms supports a single-entity paradigm that directly informs theoretical models of animal cognition. We present emergent behaviors including phase-organized rings and trajectory sequences that interact with environmental cues and geometry in large, fragmented mazes. Thus, NeuroSwarms is a model artificial spatial system that integrates autonomous control and theoretical neuroscience to potentially uncover common principles to advance both domains.
机译:与动物的自然栖息地相比,在相对较小和/或简单环境中的记录数据产生的空间认知的神经生物学理论。目前尚不清楚如何将理论模型扩展到大型或复杂的空间。互补的是,在自主系统技术中,应用程序一直在延长到大量低脚印移动平台的分布式控制方法。动物和许多机器人组必须解决导航复杂和不确定环境的常见问题。在这里,我们介绍了NeuroSwarms控制框架,以调查对最小的人工剂的自适应,自主群体控制是否可以通过直接类似于啮齿动物空间认知的神经电路来实现。 NeuroSwarms通常为神经元和蜂拥而种的群体为经常性网络。我们实施了类似的神经元代理相互作用,其中相互可见的试剂仿佛在吸引器网络中是往复连接的位置电池。我们将相位态归因于代理,以使振荡同步模式类似于θ节奏(5-12·Hz)序列生成的海马模型。我们证明,多代理人批量和奖励方法动态可以表示为Hebbian学习的移动形式,而Neuroswarms支持单一实体范式,直接通知理论模型的动物认知。我们呈现出紧急行为,包括相位组织的环和轨迹序列,其与环境提示和几何形状相互作用。因此,神经驱动器是一种模型人工空间系统,可集成自主控制和理论神经科学,以潜在地揭示普通原则来推进两个域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号