首页> 外文期刊>Calphad: Computer Coupling of Phase Diagrams and Thermochemistry >Development of a multicomponent reaction rate model coupling thermodynamics and kinetics for reaction between high Mn-high Al steel and CaO-SiO2-type molten mold flux
【24h】

Development of a multicomponent reaction rate model coupling thermodynamics and kinetics for reaction between high Mn-high Al steel and CaO-SiO2-type molten mold flux

机译:高Mn高铝钢和CaO-SiO2型熔融霉菌通量反应的多组分反应速率模型耦合热力学和动力学的研制

获取原文
获取原文并翻译 | 示例
           

摘要

A new multi-component reaction model was developed in order to describe complex reaction phenomena between a high Mn-high Al steel and a CaO-SiO2-type molten mold flux. This model is an extension of Robertson's multicomponent mixed-transport-control theory (Robertson et al., 1984) [7], where rate controlling step is assumed to be a mass transport of diffusing species in a boundary layer, while chemical equilibrium is assumed at the reaction interface. This model also employs a CALPHAD type multicomponent-multiphase thermodynamic calculations for chemical equilibria at the interface. By explicitly taking into account 1) local equilibrium at the liquid steel-liquid flux interface, 2) flux density equations for each diffusing species in the steel and the flux phases, and 3) instantaneous change of mass transfer coefficients of all diffusing species in the flux phase by varying viscosity of the flux, previous laboratory scale experimental data could be well explained under various [pet Al](0), [pct Si](0) in the liquid steel, (pet CaO)/(pct SiO2), (pct Al2O3)(0), (pet MgO)(0) in the liquid flux, and reaction temperature. From the model calculations under the various [pet Al](0), it was concluded that the present reaction model can be successfully applicable from low [pct Al] to high [pct Al] conditions in liquid steel. The present model was further extended in simulating composition change in a mold flux in a continuous casting mold, where the steel and the flux continuously enter and leave. The model calculations show good agreement with pilot plant scale data available in literature. From the calculation results under different casting variables such as [pct Al](0), mold flux pool depth, and mold flux consumption rate, the Al2O3 accumulation in the CaO-SiO2-type mold flux during the continuous casting was discussed.
机译:开发了一种新的多组分反应模型,以描述高Mn高铝钢和CaO-SiO2型熔融霉菌通量之间的复杂反应现象。该模型是Robertson的多组分混合传输控制理论(Robertson等,1984)[7]的扩展,其中速率控制步骤被假定在边界层中的漫射物种的质量传输,而假设化学平衡在反应界面。该模型还采用了Calphad型多组分 - 多相热力学计算,用于界面处的化学均衡。通过明确考虑1)局部平衡在液体钢 - 液相界面,2)钢中每个扩散物种的磁通密度方程,以及3)所有扩散种类的传质系数的瞬时变化通过不同粘度的助焊剂的助焊剂相位,在液体钢中的各种[PET A1](0),[PCT Si](0)下可以很好地解释以前的实验室规模实验数据,(PET CAO)/(PCT SiO2), (PCT Al2O3)(0),(PET MgO)(0)在液体通量和反应温度。从各种[PET A1](0)下的模型计算中,得出结论,本反应模型可以成功地从液钢中的低[PCT Al]到高[PCT Al]条件。在连续铸造模具中模拟组合物变化的模拟组合物变化进一步延伸了本模型,其中钢和助焊剂连续进入并离开。模型计算与文献中可用的试验厂规模数据显示良好的一致性。从不同铸造变量下的计算结果,如[PCT A1](0),模具助熔剂深度和模具助焊剂消耗率,讨论了连续铸造期间CaO-SiO2型模具通量的Al2O3积累。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号