...
首页> 外文期刊>Biotechnology and Bioengineering >Plasmid-encoded biosynthetic genes alleviate metabolic disadvantages while increasing glucose conversion to shikimate in an engineered Escherichia coli strain
【24h】

Plasmid-encoded biosynthetic genes alleviate metabolic disadvantages while increasing glucose conversion to shikimate in an engineered Escherichia coli strain

机译:质粒编码的生物合成基因可缓解代谢缺点,同时将葡萄糖转化为在工程化的大肠杆菌菌株中的Shikime

获取原文
获取原文并翻译 | 示例
           

摘要

Metabolic engineering strategies applied over the last two decades to produce shikimate (SA) in Escherichia coli have resulted in a battery of strains bearing many expression systems. However, the effects that these systems have on the host physiology and how they impact the production of SA are still not well understood. In this work we utilized an engineered E. coli strain to determine the consequences of carrying a vector that promotes SA production from glucose with a high-yield but that is also expected to impose a significant cellular burden. Kinetic comparisons in fermentors showed that instead of exerting a negative effect, the sole presence of the plasmid increased glucose consumption without diminishing the growth rate. By constitutively expressing a biosynthetic operon from this vector, the more active glycolytic metabolism was exploited to redirect intermediates toward the production of SA, which further increased the glucose consumption rate and avoided excess acetate production. Fluxomics and metabolomics experiments revealed a global remodeling of the carbon and energy metabolism in the production strain, where the increased SA production reduced the carbon available for oxidative and fermentative pathways. Moreover, the results showed that the production of SA relies on a specific setup of the pentose phosphate pathway, where both its oxidative and non-oxidative branches are strongly activated to supply erythrose-4-phosphate and balance the NADPH requirements. This work improves our understanding of the metabolic reorganization observed in E. coli in response to the plasmid-based expression of the SA biosynthetic pathway. Biotechnol. Bioeng. 2017;114: 1319-1330. (c) 2017 Wiley Periodicals, Inc.
机译:在过去二十年中应用的代谢工程策略在大肠杆菌中产生Shikimate(SA)导致了患有许多表达系统的菌株电池。然而,这些系统对宿主生理学的影响以及它们如何影响SA的产生仍然无法清楚地理解。在这项工作中,我们利用工程化大肠杆菌菌株来确定携带促进葡萄糖的载体的载体的后果,但也预期施加显着的细胞负担。发酵罐中的动力学比较表明,由于在不降低生长速率的情况下,质粒的唯一存在增加了质粒的唯一存在增加了葡萄糖消耗。通过组成来自该载体的生物合成型术语,利用更活跃的糖酵解代谢来重定向到SA的生产中的中间体,这进一步增加了葡萄糖消耗率并避免了过量的醋酸盐。 Fluxomics和代谢组学实验表明,生产菌株中的碳和能量代谢的全局重塑,其中SA生产增加降低了可用于氧化和发酵途径的碳。此外,结果表明,SA的生产依赖于戊糖磷酸途径的特异性设置,其中氧化和非氧化分支被强烈激活以供应红绿素-4-磷酸盐并平衡NADPH要求。这项工作提高了我们对大肠杆菌中观察到的代谢重组的理解,响应于SA生物合成途径的质粒表达。 Biotechnol。生物。 2017; 114:1319-1330。 (c)2017 Wiley期刊,Inc。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号