首页> 外文期刊>Biotechnology and Bioengineering >On the donor substrate dependence of group-transfer reactions by hydrolytic enzymes: Insight from kinetic analysis of sucrose phosphorylase-catalyzed transglycosylation
【24h】

On the donor substrate dependence of group-transfer reactions by hydrolytic enzymes: Insight from kinetic analysis of sucrose phosphorylase-catalyzed transglycosylation

机译:通过水解酶对群体转移反应的供体基质依赖性:蔗糖磷酸化酶催化转基质动力学分析的洞察

获取原文
获取原文并翻译 | 示例
           

摘要

Chemical group-transfer reactions by hydrolytic enzymes have considerable importance in biocatalytic synthesis and are exploited broadly in commercial-scale chemical production. Mechanistically, these reactions have in common the involvement of a covalent enzyme intermediate which is formed upon enzyme reaction with the donor substrate and is subsequently intercepted by a suitable acceptor. Here, we studied the glycosylation of glycerol from sucrose by sucrose phosphorylase (SucP) to clarify a peculiar, yet generally important characteristic of this reaction: partitioning between glycosylation of glycerol and hydrolysis depends on the type and the concentration of the donor substrate used (here: sucrose, alpha-d-glucose 1-phosphate (G1P)). We develop a kinetic framework to analyze the effect and provide evidence that, when G1P is used as donor substrate, hydrolysis occurs not only from the beta-glucosyl-enzyme intermediate (E-Glc), but additionally from a noncovalent complex of E-Glc and substrate which unlike E-Glc is unreactive to glycerol. Depending on the relative rates of hydrolysis of free and substrate-bound E-Glc, inhibition (Leuconostoc mesenteroidesSucP) or apparent activation (Bifidobacterium adolescentisSucP) is observed at high donor substrate concentration. At a G1P concentration that excludes the substrate-bound E-Glc, the transfer/hydrolysis ratio changes to a value consistent with reaction exclusively through E-Glc, independent of the donor substrate used. Collectively, these results give explanation for a kinetic behavior of SucP not previously accounted for, provide essential basis for design and optimization of the synthetic reaction, and establish a theoretical framework for the analysis of kinetically analogous group-transfer reactions by hydrolytic enzymes.
机译:水解酶的化学群转移反应在生物催化合成方面具有相当重要的重要性,并且在商业规模化学生产中广泛利用。机械地,这些反应具有共价酶中间体的累及,其在与供体基质的酶反应上形成,随后被合适的受体拦截。在这里,我们通过蔗糖磷酸化酶(SUCP)研究了来自蔗糖的糖醇的糖基化,以阐明该反应的特殊,但通常一般重要的特征:甘油糖基化与水解的糖基化之间的分配取决于所用供体基材的类型和浓度(这里:蔗糖,α-D-葡萄糖1-磷酸(G1P))。我们开发动力学框架来分析效果并提供证据,当使用G1P用作供体基质时,不仅来自β-葡萄糖基酶中间体(E-GLC)而异水,而且来自E-GLC的非共价络合物。与E-GLC不同的基质对甘油不能反应。取决于游离和底物结合的E-GLC的水解的相对速率,在高供体基质浓度下观察到抑制(Leuconostoc Mesenteroidescp)或表观活化(双歧杆菌生胶囊)。在不包括基板结合的E-GLC的G1P浓度下,转移/水解比在仅通过E-GLC的完全反应变化到一致的值,与所用的供体基材无关。总的来说,这些结果给出了先前未占SUCP的动力学行为的解释,为合成反应的设计和优化提供了基本基础,并建立了通​​过水解酶分析动力学群体转移反应的理论框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号