首页> 外文期刊>Biomechanics and modeling in mechanobiology >Exploring conditions that make cortical bone geometry optimal for physiological loading
【24h】

Exploring conditions that make cortical bone geometry optimal for physiological loading

机译:探索使皮质骨几何形状最佳生理负荷的条件

获取原文
获取原文并翻译 | 示例
       

摘要

While physiological loading on lower long bones changes during bone development, the bone cross section either remains circular or slowly changes from nearly circular to other shapes such as oval and roughly triangular. Bone is said to be an optimal structure, where strength is maximized using the optimal distribution of bone mass (also called Wolff's law). One of the most appropriate mathematical validations of this law would be a structural optimization-based formulation where total strain energy is minimized against a mass and a space constraint. Assuming that the change in cross section during bone development and homeostasis after adulthood is direct result of the change in physiological loading, this work investigates what optimization problem formulation (collectively, design variables, objective function, constraints, loading conditions, etc.) results in mathematically optimal solutions that resemble bones under actual physiological loading. For this purpose, an advanced structural optimization-based computational model for cortical bone development and defect repair is presented. In the optimization problem, overall bone stiffness is maximized first against a mass constraint, and then also against a polar first moment of area constraint that simultaneously constrains both mass and space. The investigation is completed in two stages. The first stage is developmental stage when physiological loading on lower long bones (tibia) is a random combination of axial, bending and torsion. The topology optimization applied to this case with the area moment constraint results into circular and elliptical cross sections similar to that found in growing mouse or human. The second investigation stage is bone homeostasis reached in adulthood when the physiological loading has a fixed pattern. A drill hole defect is applied to the adult mouse bone, which would disrupt the homeostasis. The optimization applied after the defect interestingly brings the damaged section back to
机译:虽然在骨骼发育过程中较低的长骨骼的生理负载发生变化,但骨横截面要么从几乎圆形到其他形状,如椭圆形和大致三角形的其他形状保持圆形或缓慢变化。据说骨骼是最佳结构,其中使用骨质量的最佳分布(也称为Wolff的法律)最大化强度。该法律的最合适的数学验证之一是基于结构优化的制剂,其中总应变能量最小化以质量和空间约束。假设在成年后骨骼发育和稳态期间的横截面的变化是生理负载变化的直接导致生理负载变化,研究了该工作调查了哪些优化问题(统称,设计变量,客观函数,约束,装载条件等)的结果在实际生理负荷下类似于骨骼的数学最佳解决方案。为此目的,提出了一种用于皮质骨开发和缺陷修复的基于先进的结构优化的计算模型。在优化问题中,总体骨刚度首先抵抗质量约束,然后对区域约束的极性第一时刻,同时限制质量和空间。调查分为两个阶段。第一阶段是在低骨骼(胫骨)上的生理负载时是轴向,弯曲和扭转的随机组合的发展阶段。拓扑优化应用于这种情况,该壳体具有区域时刻约束导致圆形和椭圆形横截面,其类似于生长小鼠或人类。第二次调查阶段是在生理载荷具有固定图案时在成年期达到的骨稳态。钻孔缺损应用于成年小鼠骨骼,这会破坏稳态。有趣的缺陷后应用的优化将损坏的部分带回

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号