首页> 外文期刊>Biomechanics and modeling in mechanobiology >Material heterogeneity, microstructure, and microcracks demonstrate differential influence on crack initiation and propagation in cortical bone
【24h】

Material heterogeneity, microstructure, and microcracks demonstrate differential influence on crack initiation and propagation in cortical bone

机译:材料异质性,微观结构和微裂纹表明了对皮质骨裂纹引发和繁殖的差异影响

获取原文
获取原文并翻译 | 示例
       

摘要

The recent studies have shown that long-term bisphosphonate use may result in a number of mechanical alterations in the bone tissue including a reduction in compositional heterogeneity and an increase in microcrack density. There are limited number of experimental and computational studies in the literature that evaluated how these modifications affect crack initiation and propagation in cortical bone. Therefore, in this study, the entire crack growth process including initiation and propagation was simulated at the microscale by using the cohesive extended finite element method. Models with homogeneous and heterogeneous material properties (represented at the microscale capturing the variability in material property values and their distribution) as well as different microcrack density and microstructure were compared. The results showed that initiation fracture resistance was higher in models with homogeneous material properties compared to heterogeneous ones, whereas an opposite trend was observed in propagation fracture resistance. The increase in material heterogeneity level up to 10 different material property sets increased the propagation fracture resistance beyond which a decrease was observed while still remaining higher than the homogeneous material distribution. The simulation results also showed that the total osteonal area influenced crack propagation and the local osteonal area near the initial crack affected the crack initiation behavior. In addition, the initiation fracture resistance was higher in models representing bisphosphonate treated bone (low material heterogeneity, high microcrack density) compared to untreated bone models (high material heterogeneity, low microcrack density), whereas an opposite trend was observed at later stages of crack growth. In summary, the results demonstrated that tissue material heterogeneity, microstructure, and microcrack density influenced crack initiation and propagation differently. The findings also elucidate
机译:最近的研究表明,长期双膦酸盐可能导致骨组织中的许多机械改变,包括减少组成异质性和微裂纹密度的增加。文献中存在有限数量的实验和计算研究,评估这些修饰如何影响皮质骨中的裂纹启动和繁殖。因此,在该研究中,通过使用粘性延伸有限元法在微尺寸在微观上模拟包括启动和传播的整个裂缝生长过程。均匀和异质材料特性的模型(在Microscale中表示捕获材料性质值的可变性及其分配)以及不同的微裂纹密度和微观结构。结果表明,与异质物质相比,具有均匀材料特性的模型中起始裂缝抗性较高,而在繁殖裂缝抗性中观察到相反的趋势。材料异质性水平的增加高达10种不同的材料性能集比超出了差异裂缝阻力,而在仍然比均匀材料分布仍然高于仍然仍然高于均匀的材料分布。模拟结果还表明,总稳定性区域影响了裂纹传播和初始裂纹附近的局部过度区域影响了裂纹启动行为。此外,与未处理的骨模型(高材料异质性,低微裂纹密度)相比,代表双膦酸盐处理的骨(低材料异质性,高微裂纹密度)的模型中的起始断裂抗性较高,而在裂纹的后期观察到相反的趋势生长。总之,结果表明,组织材料异质性,微观结构和微裂纹密度不同地影响裂纹引发和繁殖。调查结果也阐明

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号