...
首页> 外文期刊>Biomechanics and modeling in mechanobiology >Three-dimensional flows in a hyperelastic vessel under external pressure
【24h】

Three-dimensional flows in a hyperelastic vessel under external pressure

机译:外部压力下的超弹性容器中的三维流动

获取原文
获取原文并翻译 | 示例
           

摘要

We study the collapsible behaviour of a vessel conveying viscous flows subject to external pressure, a scenario that could occur in many physiological applications. The vessel is modelled as a three-dimensional cylindrical tube of nonlinear hyperelastic material. To solve the fully coupled fluid-structure interaction, we have developed a novel approach based on the Arbitrary Lagrangian-Eulerian (ALE) method and the frontal solver. The method of rotating spines is used to enable an automatic mesh adaptation. The numerical code is verified extensively with published results and those obtained using the commercial packages in simpler cases, e.g. ANSYS for the structure with the prescribed flow, and FLUENT for the fluid flow with prescribed structure deformation. We examine three different hyperelastic material models for the tube for the first time in this context and show that at the small strain, all three material models give similar results. However, for the large strain, results differ depending on the material model used. We further study the behaviour of the tube under a mode-3 buckling and reveal its complex flow patterns under various external pressures. To understand these flow patterns, we show how energy dissipation is associated with the boundary layers created at the narrowest collapsed section of the tube, and how the transverse flow forms a virtual sink to feed a strong axial jet. We found that the energy dissipation associated with the recirculation does not coincide with the flow separation zone itself, but overlaps with the streamlines that divide the three recirculation zones. Finally, we examine the bifurcation diagrams for both mode-3 and mode-2 collapses and reveal that multiple solutions exist for a range of the Reynolds number. Our work is a step towards modelling more realistic physiological flows in collapsible arteries and veins.
机译:我们研究了经过外部压力的持续粘性流量的可折叠行为,这种情况可能发生在许多生理应用中。该容器被建模为非线性超弹性材料的三维圆柱形管。为了解决完全耦合的流体结构相互作用,我们开发了一种基于任意拉格朗日 - 欧拉(ALE)方法和正面求解器的新方法。旋转脊柱的方法用于启用自动网格自适应。数值代码被广泛验证,具有公布的结果,并且在更简单的情况下使用商业包获得的结果,例如,如此。具有规定流量的结构的ANSYS,并且具有规定结构变形的流体流动流畅。我们在这一背景下首次检查三种不同的超弹性材料模型,并表明在小菌株处,所有三种材料模型都提供了类似的结果。然而,对于大应变,结果根据所使用的材料模型而不同。我们进一步研究了管道在模式-3屈曲下管的行为,并在各种外部压力下揭示其复杂的流动模式。为了理解这些流动模式,我们示出了能量耗散如何与在管的最窄折叠部分处产生的边界层相关联,以及横向流动如何形成虚拟垫圈以供给强轴向射流。我们发现与再循环相关的能量耗散与流动分离区本身不一致,而是与划分三个再循环区域的流线重叠。最后,我们检查模型-3和模式-2折叠的分叉图,并揭示了一系列雷诺数的多种解决方案。我们的作品是朝着可折叠动脉和静脉中更具现实的生理流动建模的一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号