首页> 外文期刊>Biomechanics and modeling in mechanobiology >Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids
【24h】

Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids

机译:在增殖单层和球状体的小群中建模机械不均匀性

获取原文
获取原文并翻译 | 示例
       

摘要

Understanding the mechanical behavior of multicellular monolayers and spheroids is fundamental to tissue culture, organism development, and the early stages of tumor growth. Proliferating cells in monolayers and spheroids experience mechanical forces as they grow and divide and local inhomogeneities in the mechanical microenvironment can cause individual cells within the multicellular system to grow and divide at different rates. This differential growth, combined with cell division and reorganization, leads to residual stress. Multiple different modeling approaches have been taken to understand and predict the residual stresses that arise in growing multicellular systems, particularly tumor spheroids. Here, we show that by using a mechanically robust agent-based model constructed with the peridynamic framework, we gain a better understanding of residual stresses in multicellular systems as they grow from a single cell. In particular, we focus on small populations of cells (1-100 s) where population behavior is highly stochastic and prior investigation has been limited. We compare the average strain energy density of cells in monolayers and spheroids using different growth and division rules and find that, on average, cells in spheroids have a higher strain energy density than cells in monolayers. We also find that cells in the interior of a growing spheroid are, on average, in compression. Finally, we demonstrate the importance of accounting for stochastic fluctuations in the mechanical environment, particularly when the cellular response to mechanical cues is nonlinear. The results presented here serve as a starting point for both further investigation with agent-based models, and for the incorporation of major findings from agent-based models into continuum scale models when explicit representation of individual cells is not computationally feasible.
机译:了解多细胞单层和球状体的力学行为是组织培养,生物发育和肿瘤生长的早期阶段的基础。单层和球状体中的增殖细胞经历机械力,因为它们生长并分裂,并且机械微环境中的局部不均匀可导致多细胞系统内的个体细胞以不同的速率生长和分开。这种差异生长,结合细胞分裂和重组,导致残余应力。已经采取了多种不同的建模方法来理解和预测生长多细胞系统中产生的残留应力,特别是肿瘤球状体。在这里,我们表明,通过使用与白动力学框架构建的基于机械鲁棒的代理的模型,我们在从单个电池中生长时,我们在多细胞系统中更好地了解了多细胞系统中的残余应力。特别是,我们专注于细胞的小群体(1-100秒),其中人口行为是高度随机的,事先调查受到限制。我们使用不同的生长和分割规则比较单层和球状体中细胞的平均应变能量密度,并在单层中的细胞中发现球形细胞具有比单层中的细胞更高的应变能密度。我们还发现,生长球状体内内部的细胞平均为压缩。最后,我们展示了核对机械环境中随机波动的重要性,特别是当对机械提示的细胞反应是非线性的。这里呈现的结果用作基于代理的模型进一步调查的结果,并且当单个细胞的明确表示没有计算可行时,将基于代理的模型从基于代理的模型掺入的主要发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号