首页> 外文学位 >Micro-Mechanical Modeling of Brownian Spheroids in Oscillatory Shear Flow
【24h】

Micro-Mechanical Modeling of Brownian Spheroids in Oscillatory Shear Flow

机译:振荡剪切流中布朗球的微机械建模

获取原文
获取原文并翻译 | 示例

摘要

We calculate the stress response, or rheology, of a micro-mechanical model suspension of rigid, Brownian spheroids in a Newtonian fluid in an oscillatory shear flow. The straining and rotation components of a linear flow affects the microstructure, or particle orientation in space and time, and thus, the suspension stress. A statistical description of the microstructure is given by an orientation probability distribution function, which quantifies the likelihood of a particle possessing a particular orientation at an instance in time. The evolution of the microstructure results from the memory of the material, advection from the flow, and rotational Brownian motion. The macroscopic stress response is calculated from ensemble averages of the stresslet weighted by the orientation distribution function. First, we calculate the linear stress response of a dilute suspension of rigid, spheroidal, self-propelled particles under a small-amplitude oscillatory shear deformation using regular perturbation theory. The particle activity leads to a direct contribution to the material stress, via self-propulsion, and an indirect contribution due to correlated tumbling events. The mechanism and strength of self-propulsion and correlation between tumbling events can be determined from the linear stress response of an active suspension. Next, we develop a framework for determining the relaxation moduli of a viscoelastic material through the combination of a memory integral expansion and a multimode-frequency oscillatory shear flow. We analytically determine the first nonlinear relaxation modulus of the model suspension through a comparison of the second normal stress difference from the microstructural stress response, calculated via regular perturbation theory, and a co-rotational memory integral expansion. The stress response of the system is reconstructed for the start-up and cessation of steady simple shear and uniaxial extension. Finally, we numerically calculate the nonlinear viscoelasticity of the model system subject to a large-amplitude oscillatory shear flow. In a sufficiently strong flow with oscillation frequency comparable to the material relaxation rate, secondary overshoots in the stress response occur. We attribute the origin of secondary overshoots to particles undergoing a Jeffery orbit during a (half) cycle of the oscillation, analogous to the case of non-Brownian spheroids in steady shear flow.
机译:我们计算牛顿流体在振荡剪切流中的刚性布朗球体的微机械模型悬浮体的应力响应或流变学。线性流的应变和旋转分量会影响微观结构或空间和时间中的粒子方向,从而影响悬浮应力。微观结构的统计描述是由取向概率分布函数给出的,该函数量化了某个实例在某个时刻具有特定取向的粒子的可能性。微观结构的演化是由材料的记忆,流动的对流和布朗运动引起的。宏观应力响应是根据方向分布函数加权的应力集的总体平均值计算得出的。首先,我们使用规则的扰动理论计算了在小振幅振荡剪切变形下的刚性,球形,自推进颗粒的稀悬液的线性应力响应。粒子的活动通过自我推进导致对材料应力的直接贡献,而由于相关的翻滚事件而导致的间接贡献。可以根据主动悬架的线性应力响应来确定自推进的机制和强度以及翻滚事件之间的相关性。接下来,我们开发一个框架,用于通过记忆积分扩展和多模频率振荡剪切流的组合来确定粘弹性材料的松弛模量。我们通过比较微细结构应力响应的第二法向应力差(通过常规扰动理论计算得出)和同向旋转记忆积分扩展,来分析确定模型悬架的第一非线性松弛模量。重建系统的应力响应,以启动和停止稳定的简单剪切和单轴延伸。最后,我们数值计算了模型系统在大振幅振荡剪切流作用下的非线性粘弹性。在具有与材料弛豫速率相当的振荡频率的足够强的流动中,在应力响应中会发生二次过冲。我们将二次超调的起因归因于在振荡的(半个)周期内经历了Jeffery轨道的粒子,这类似于稳态剪切流中非布朗球体的情况。

著录项

  • 作者

    Bechtel, Toni M.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号