首页> 外文期刊>Biomechanics and modeling in mechanobiology >Spatiotemporal remodeling of embryonic aortic arch: stress distribution, microstructure, and vascular growth in silico
【24h】

Spatiotemporal remodeling of embryonic aortic arch: stress distribution, microstructure, and vascular growth in silico

机译:胚胎主动脉弓的时尚重塑:硅的应力分布,微观结构和血管生长

获取原文
获取原文并翻译 | 示例
       

摘要

The microstructure formaturevessels has been investigated in detail, while there is limited information about theembryonicstages, in spite of their importance in the prognosis of congenital heart defects. It is hypothesized that the embryonic vasculature represents a disorganized but dynamic soft tissue, which rapidly evolves toward a specialized multi-cellular vascular structure under mechanical loading. Here the microstructural evolution process of the embryonic pharyngeal aortic arch structure was simulated using an in ovo validated long-term growth and remodeling computational model, implemented as an in-house FEBio plug-in. Optical coherence tomography-guided servo-null pressure measurements are assigned as boundary conditions through the critical embryonic stages. The accumulation of key microstructural constituents was recorded through zoom confocal microscopy for all six embryonic arch arteries simultaneously. The total amount and the radial variation slope of the collagen along the arch wall thickness in different arch types and for different embryonic times, with different dimension scales, were normalized and compared statistically. The arch growth model shows that the stress levels around the lumen boundary increase from approximate to 270Pa (Stage 18) to a level higher than approximate to 600Pa (Stage 24), depending on matrix constituent production rates, while the homeostatic strain level is kept constant. The statistical tests show that although the total collagen levels differentiate among bilateral positions of the same arch, the shape coefficient of the matrix microstructural gradient changes with embryonic time, proving radial localization, in accordance with numerical model results. In vivo cell number (DAPI) and vascular endothelial growth factor distributions followed similar trends.
机译:虽然他们在先天性心脏缺陷预后重要性的重要性,但已经详细研究了微观结构形成vessels。假设胚胎脉管系统代表紊乱但动态的软组织,其在机械载荷下迅速发展朝着专用的多细胞血管结构。这里使用ovo验证的长期生长和重塑计算模型进行模拟胚胎咽部主动脉弓结构的微观结构演化过程,实施为内部FEBIO插件。光学相干断层扫描引导的伺服空压测量通过临界胚胎阶段被分配为边界条件。通过对所有六个胚胎拱动脉同时记录关键微观结构成分的积累。沿着不同拱形类型和不同胚胎时间的拱形壁厚度沿着拱形壁厚度,具有不同尺寸尺度的拱形壁厚度的总量和径向变化斜率被标准化并统计比较。拱形生长模型表明,根据矩阵成分生产率,腔边界周围的压力水平从近似到270Pa(第18阶段24)的水平增加到高于600Pa(阶段24),而稳态应变水平保持恒定。统计测试表明,虽然总胶原蛋白水平分别区分相同拱的双侧位置,但根据数值结果,胚胎微观结构梯度的形状系数随胚胎时间而变化,证明径向定位。在体内细胞数(DAPI)和血管内皮生长因子分布遵循类似的趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号