首页> 外文期刊>Biomechanics and modeling in mechanobiology >Signalling molecule transport analysis in lacunar-canalicular system
【24h】

Signalling molecule transport analysis in lacunar-canalicular system

机译:拉腔釜系统中的信号分子传输分析

获取原文
获取原文并翻译 | 示例
       

摘要

Mechanical loading-induced fluid flow in lacunar-canalicular space (LCS) of bone excites osteocyte cells to release signalling molecules which initiate osteo-activities. Theoretical models considered canaliculi as a uniform and symmetrical space/channel in bone. However, experimental studies reported that canalicular walls are irregular and curvy resulting in inhomogeneous fluid motion which may influence the molecular transport. Therefore, a new mathematical model of LCS with curvy canalicular walls is developed to characterize cantilever bending-induced canalicular flow behaviour in terms of pore-pressure, fluid velocity, and streamlines. The model also analyses the mobility of signalling molecules involved in bone mechanotransduction as a function of loading frequency and permeability of LCS. Inhomogeneous flow is observed at higher loading frequency which amplifies mechanotransduction; nevertheless, it also promotes trapping of signalling molecules. The effects of shape and size of signalling molecules on transport behaviour are also studied. Trivially, signalling molecules larger in size and weight move slower as compared to molecules small in size and weight which validates the findings of the present study. The outcomes will ultimately be useful in designing better biomechanical exercise in combination with pharmaceutical agents to improve the bone health.
机译:机械负载诱导的骨瓣膜空间(LCS)中的流体流动激发骨细胞细胞以释放起始的信号分子,该信号分子引发溶溶溶溶溶溶质活性。理论模型认为CANALICULI作为骨骼中的均匀和对称空间/通道。然而,实验研究报道说,管壁是不规则和弯曲,导致不均匀的流体运动,这可能影响分子运输。因此,开发了一种具有曲面管壁的LCS的新数学模型,以表征孔隙压力,流体速度和流动线方面的悬臂弯曲诱导的穴位流动。该模型还分析了作为LCS的负载频率和渗透性的骨机组中涉及的信号分子的迁移率。在较高的负载频率下观察到不均匀的流动,该频率放大机械频体;然而,它还促进了信号传导分子的诱捕。还研究了信号传导分子对运输行为的形状和尺寸的影响。与尺寸和重量小的分子相比,尺寸和重量较大的信号传导分子较慢,验证本研究的发现。结果最终将有助于设计更好的生物力学运动与药剂组合以改善骨骼健康。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号