首页> 外文期刊>Biomechanics and modeling in mechanobiology >Microfluidic and computational study of structural properties and resistance to flow of blood clots under arterial shear
【24h】

Microfluidic and computational study of structural properties and resistance to flow of blood clots under arterial shear

机译:动脉剪切下结构性和血栓流动性的微流体和计算研究

获取原文
获取原文并翻译 | 示例
           

摘要

The ability of a blood clot to modulate blood flow is determined by the clot's resistance, which depends on its structural features. For a flow with arterial shear, we investigated the characteristic patterns relating to clot shape, size, and composition on the one hand, and its viscous resistance, intraclot axial flow velocity, and shear distributions on the other. We used microfluidic technology to measure the kinetics of platelet, thrombin, and fibrin accumulation at a thrombogenic surface coated with collagen and tissue factor (TF), the key clot-formation trigger. We subsequently utilized the obtained data to perform additional calibration and validation of a detailed computational fluid dynamics model of spatial clot growth under flow. We then ran model simulations to gain insights into the resistance of clots formed under our experimental conditions. We found that increased thrombogenic surface length and TF surface density enhanced the bulk thrombin and fibrin generation in a nonadditive, synergistic way. The height of the platelet deposition domain-and, therefore, clot occlusivity-was rather robust to thrombogenic surface length and TF density variations, but consistently increased with time. Clot viscous resistance was non-uniform and tended to be higher in the fibrin-rich, inner "core" region of the clot. Interestingly, despite intraclot structure and viscous resistance variations, intraclot flow velocity variations were minor compared to the abrupt decrease in flow velocity around the platelet deposition region. Our results shed new light on the connection between the structure of clots under arterial shear and spatiotemporal variations in their resistance to flow.
机译:血凝块调节血流的能力由凝块的抗性决定,这取决于其结构特征。对于具有动脉剪切的流动,我们研究了一方面与凝块形状,尺寸和组成有关的特征模式,以及其粘性电阻,颅内轴向流速和剪切分布。我们使用的微流体技术测量血小板和组织因子(TF)的血栓形成表面上的血小板,凝血酶和纤维蛋白积累的动力学,是关键凝块形成触发。随后我们利用所获得的数据来执行流量下的空间凝块生长的详细计算流体动力学模型的额外校准和验证。然后,我们运行模型模拟,以获得在我们的实验条件下形成的凝块的电阻的洞察力。我们发现,增加的血栓形成表面长度和TF表面密度以非资达的协同方式增强了块状凝血酶和纤维蛋白生成。血小板沉积结构域的高度 - 因此,凝块闭塞 - 对血栓形成表面长度和TF密度变化相当鲁棒,但随着时间的推移始终如一地增加。凝块粘性抗性是不均匀的,富含纤维蛋白的内部“核心”区域倾向于更高。有趣的是,尽管脑内结构和粘性抗性变化,但与血小板沉积区周围的流速的突然降低相比,颅内流速变化很小。我们的结果在动脉剪切结构下的凝块结构与流动性抵抗力下的凝块结构之间的联系上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号