...
首页> 外文期刊>Biofabrication >The bio-gripper: a fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing
【24h】

The bio-gripper: a fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing

机译:生物夹具:用于添加剂生物制造的活组织构建体的流体驱动的微操纵器

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We previously developed the Bio-Pick, Place, and Perfuse (Bio-P3) instrument to fabricate large perfusable tissue constructs by stacking and aligning scaffold-free living microtissues with integrated lumens. The Bio-P3 required an actuating mechanism to manipulate living microtissues of various sizes and shapes that are fragile, and must remain in an aqueous environment. The optical transparency of the Bio-P3 gripping device was essential to provide unobstructed visuals for accurate alignment of microtissues. We previously engineered a pilot fluid force-driven bio-gripper that can pick-and-place microtissue in planar position without causing cellular damage by pulling culture medium through track-etched membrane-integrated cell culture inserts. In this study, we invented a new flexible bio-gripper design that maximized the bio-gripper utilities. We utilized experimental approaches, multivariate analyzes, and theoretical modeling to elucidate how membrane characteristics (pore size, pore density, membrane thickness, membrane area, and surface chemistry) altered bio-gripper robustness and the flow rate (Q(c)) required for successful gripping. We devised two standardized tests and synthetic parts that mimicked microtissues, to systematically quantify bio-gripper performance. All thirteen syringe pump-driven bio-grippers except one successfully gripped and released synthetic parts with values of Q(c) that coincided with our mathematical simulation of the fluid mechanics of gripping. The bio-gripper could grip synthetic parts of various sizes, shapes and masses, demonstrating the robustness of the actuating mechanism. Multivariate analysis of experimental data indicated that both membrane porosity and thickness modulated Q(c), and in addition, revealed that membrane pore density determined membrane optical transparency. Fabricating large tissue constructs requires repeated stacking of microtissues. We showed that one bio-gripper could pick-and-place living microtissues thirty times with Q(c) corresponding to our simulation. Our bio-gripper was capable of stacking and aligning twenty microtissues. In summary, we successfully engineered a robust controllable fluid-driven bio-gripper to efficiently manipulate living microtissues and micro-objects in an aqueous environment.
机译:我们之前开发了生物挑选,地点和灌注(BIO-P3)仪器,通过堆叠和对准无缝的生物微调,与集成的流明进行堆叠和对齐。 Bio-P3所需的致动机制以操纵各种尺寸和形状的生物微小,并且必须保留在水性环境中。 Bio-P3夹持装置的光学透明度对于提供无阻碍的视觉效果是必不可少的,以便精确对准微发布。我们以前设计了一种先导流体力驱动的生物夹具,可以通过通过轨道蚀刻膜整体细胞培养件拉动培养基,在平面位置拾取和放置微小仪器而不会引起细胞损伤。在这项研究中,我们发明了一种新的灵活生物夹具设计,最大化了生物夹具公用事业。我们利用了实验方法,多变量分析和理论模型来阐明膜特性(孔径,孔密度,膜厚度,膜面积和表面化学)改变了生物夹持的鲁棒性和流速(Q(c))成功抓住。我们设计了两种标准化的测试和合成零件,模仿微观发布,系统地量化了生物夹持性能。所有十三个注射器泵驱动的生物夹具,除了一个成功夹持和释放的合成零件,具有Q(c)的值,恰逢我们的抓握流体机械的数学模拟。生物夹具可以抓住各种尺寸,形状和质量的合成部分,证明了致动机构的稳健性。实验数据的多变量分析表明,膜孔隙率和厚度调节Q(c),另外,膜孔密度确定膜光学透明度。制造大型组织构建体需要重复堆叠微辐射。我们展示了一个生物夹具可以使用对应于我们的模拟的Q(c)来挑选生物微调30次。我们的生物夹具能够堆叠和对准20个微辐射。总之,我们成功地设计了一种坚固的可控流体驱动的生物夹具,以在水性环境中有效地操纵生物微调和微观物体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号