...
首页> 外文期刊>Biofabrication >Fabrication of 3D-nanofibrous fibrinogen scaffolds using salt-induced self assembly
【24h】

Fabrication of 3D-nanofibrous fibrinogen scaffolds using salt-induced self assembly

机译:使用盐诱导的自组装制备3D纳米纤维纤维蛋白原支架

获取原文
获取原文并翻译 | 示例

摘要

Fibrinogen has become highly attractive for tissue engineering scaffolds since it is a naturally occurring blood protein, which contains important binding sites to facilitate cell adhesion. Here, we introduce a novel biofabrication technique to prepare three-dimensional, nanofibrous fibrinogen scaffolds by salt-induced self assembly. For the first time, we were able to fabricate either free-standing or immobilized fibrinogen scaffolds on demand by tailoring the underlying substrate material and adding a fixation and washing procedure after the fiber assembly. Using scanning electron microscopy we observed that different buffers including phosphate buffered saline and sodium phosphate reproducibly yielded dense fiber networks on bare and silanized glass surfaces, gold as well as polystyrene upon drying. Fibrillogenesis could be induced with a fibrinogen concentration of at least 2 mg ml(-1) in a pH regime of 7-9. Fiber diameters ranged from 100 to 300 nm, thus resembling native fibrin andECMprotein fibers. By adjusting the salt concentration we could prepare fibrinogen scaffolds with overall dimensions in the centimeter range and a thickness of 3 to 5 mu m. Using FTIR analysis we observed peak shifts of the amide bands for fibrinogen nanofibers in comparison to planar fibrinogen, which indicates changes in the secondary structure. Since fibrillogenesis was only induced upon drying when salt ions were present we assume that protein molecules were locally oriented in the respective buffers, which-in combination with the observed conformational changes-led to the assembly of individual molecules into fibers. In summary, our novel self assembly process offers a simple and well controllable method to prepare large scale 3D-scaffolds of fibrinogen nanofibers under physiological conditions. The unique possibility to chose between free-standing and immobilized scaffolds makes our novel biofabrication process highly attractive for the preparation of versatile tissue engineering scaffolds.
机译:纤维蛋白原对组织工程支架具有高度吸引力,因为它是一种天然存在的血液蛋白质,其含有重要的结合位点,以促进细胞粘附。在这里,我们介绍一种通过盐诱导的自组装制备三维纳米纤维纤维蛋白原支架的新型生物制作技术。首次,我们能够通过剪裁底层基底材料并在纤维组件后添加固定和洗涤程序来根据需要制造独立式或固定的纤维蛋白原支架。使用扫描电子显微镜检查,观察到不同的缓冲剂,包括磷酸盐缓冲盐水和磷酸钠在裸露和硅烷化的玻璃表面上可重复产生致密的纤维网络,在干燥时进行金色和聚苯乙烯。可以在7-9的pH值下诱导纤维细胞的纤维蛋白原浓度为至少2mg ml(-1)。纤维直径范围为100至300nm,因此类似于天然纤维蛋白和蛋白蛋白纤维。通过调节盐浓度,我们可以在厘米范围内具有整体尺寸的纤维蛋白原支架,厚度为3至5μm。使用FTIR分析,我们观察到纤维蛋白原纳米纤维的酰胺带的峰值与平面纤维蛋白原相比,表明二级结构的变化。由于盐离子存在时仅在干燥时仅诱导原纤维发生,因此当盐离子存在时,我们假设蛋白质分子在各自的缓冲液中局部取向,该蛋白质分子与观察到的构象变化导致各个分子的组装成纤维。总之,我们的新型自组装工艺提供了一种简单良好的可控方法,可以在生理条件下制备纤维蛋白原纳米纤维的大规模3D支架。在独立和固定的支架之间选择的独特可能性使我们的新型生物制作过程具有高度吸引力,用于制备多功能组织工程支架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号