首页> 外文期刊>Biosystems Engineering >CFD and weighted entropy based simulation and optimisation of Chinese Solar Greenhouse temperature distribution
【24h】

CFD and weighted entropy based simulation and optimisation of Chinese Solar Greenhouse temperature distribution

机译:基于CFD和加权熵的中国日光温室温度分布模拟与优化

获取原文
获取原文并翻译 | 示例
           

摘要

Computer fluid dynamics (CFD) technique is considered as a powerful simulation tool to explore the temperature distribution in various buildings, especially for animal houses and greenhouses in recent years. However, its effective application in Chinese solar greenhouses (CSG) is still limited because of some technical problems and particular properties of CSG. A real-scale 2-D computer simulation model was developed with the finite-volume based commercial software, Fluent (R), to simulate and analyse the temperature distributions caused only by thermal discharges from the north wall in CSG, governed by two computational domains, three conservation laws, and also five boundary conditions with kappa-epsilon turbulence model. A closed and empty CSG located in northwest of China was used to determine the thermal distribution and validate the simulation model during the night period on January 26th, 2013. Simulated and experimental results showed similar temperature distributions in CSG. The maximum and average absolute air temperature differences and mean squared deviation (MSD) were respectively 1.1, 0.8 and 0.1 K comparing measurement and simulation of inside air temperature and 0.7, 0.2 and 0.7 K for interior wall surface temperature. The simulation results demonstrated that temperature stratification and non-uniformity were more obvious when the north wall was thinner, suggesting a desirable thickness of north wall for energy conservation. The expanded polystyrene boards (EPS) play a more important role in preventing heat loss compared with perforated bricks (PB) in CSG. When the material cost was taken into consideration, a comprehensive evaluation model based on weighted entropy and fuzzy optimisation methods was employed to achieve the best north wall thickness (480 mm PB with 100 or 150 mm EPS) in CSG. The simulation and evaluation models in this study could be applied to enhance the indoor temperature environment and to optimise the thickness of the north wall in CSG. (C) 2015 IAgrE. Published by Elsevier Ltd. All rights reserved.
机译:计算机流体动力学(CFD)技术被认为是探索各种建筑物中温度分布的强大工具,尤其是近年来用于动物房屋和温室的温度分布。然而,由于CSG的一些技术问题和特殊性能,其在中国日光温室(CSG)中的有效应用仍然受到限制。使用基于有限体积的商业软件Fluent(R)开发了一个实际的二维计算机仿真模型,以模拟和分析仅由CSG北壁的热排放引起的温度分布,并由两个计算域控制,三个守恒定律以及五个边界条件(使用kappa-ε湍流模型)。 2013年1月26日夜间,使用位于中国西北部的封闭且空的CSG来确定热分布并验证模拟模型。模拟和实验结果表明CSG的温度分布相似。对比内部空气温度的测量和模拟以及室内壁表面温度的0.7、0.2和0.7 K,最大和平均绝对空气温度差和均方差(MSD)分别为1.1、0.8和0.1K。仿真结果表明,当北壁较薄时,温度分层和不均匀性更加明显,表明北壁的理想厚度可以节约能源。与CSG中的多孔砖(PB)相比,发泡聚苯乙烯板(EPS)在防止热量损失方面发挥着更重要的作用。考虑材料成本时,采用基于加权熵和模糊优化方法的综合评估模型,以使南玻集团获得最佳北壁厚度(480 mm PB,EPS分别为100或150 mm)。本研究中的模拟和评估模型可用于改善室内温度环境并优化南玻北壁的厚度。 (C)2015年。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号