...
首页> 外文期刊>RSC Advances >Enhanced electrochemical performance of morphology-controlled titania-reduced graphene oxide nanostructures fabricated via a combined anodization-hydrothermal process
【24h】

Enhanced electrochemical performance of morphology-controlled titania-reduced graphene oxide nanostructures fabricated via a combined anodization-hydrothermal process

机译:通过组合阳极氧化 - 水热法制备的形态控制的二氧化钛 - 还原的石墨烯氧化物纳米结构的电化学性能提高

获取原文
获取原文并翻译 | 示例

摘要

Titania nanotubes (TNTs) synthesized by an anodization process were used as a basic substrate material to create different morphologies of quasi-1D (nanoribbons), 2D (nanoflakes), and 3D (nanoparticles) structures via an alkali-controlled hydrothermal route. Graphite oxide was introduced to the hydrothermal unit to fabricate graphene oxide/reduced graphene oxide-titania nanostructure hybrid materials. The presence of NaOH and graphene oxide in the hydrothermal environment had a profound effect on the surface morphology of the nanostructures. NaOH acted as both an etchant to convert TNT surfaces into lowdimensional structures and as a reducing agent to convert graphene oxide into reduced graphene oxide. Graphene oxide inhibited the etching rate to tune the surface morphologies into 1D, 2D, and 3D nanostructures. The electrochemical supercapacitance of all the nanostructures was characterized. Among the prepared samples, the nanostructured hybrid sample of reduced graphene oxide, titania nanoflakes, and TNT exhibited enhanced electrochemical performance with quite high specific capacitance. This superior electrochemical performance is attributed to the specific nanostructure, which provides short pathways for fast transport of salt ions and improved specific surface area for more adsorption sites for the formation of an electrical double layer, which leads to fast charge transfer.
机译:通过阳极氧化方法合成的二氧化钛纳米管(TNT)用作基本基底材料,通过碱控制的水热途径产生Quasi-1d(纳米纤维植物),2D(纳米薄片)和3D(纳米粒子)结构的不同形态。将石墨氧化物引入水热单元以制造石墨烯/氧化石墨烯氧化钛型含氧化物杂交材料。在水热环境中存在NaOH和石墨烯氧化物对纳米结构的表面形态产生了深刻的影响。 NaOH用作蚀刻剂以将TNT表面转化为低二维结构,作为还原剂将石墨烯氧化物转化成石墨烯氧化物。氧化石墨烯抑制蚀刻速率以将表面形态调节成1D,2D和3D纳米结构。所有纳米结构的电化学超电容都表征。在制备的样品中,纳米结构的石墨烯氧化物,二氧化钛纳米薄​​膜和TNT的含氧化杂化样品表现出具有相当高的电容的电化学性能。这种卓越的电化学性能归因于特定的纳米结构,其提供了用于快速运输盐离子和改进的比表面积的短路,以形成电双层的更多吸附位点,这导致快速电荷转移。

著录项

  • 来源
    《RSC Advances 》 |2016年第15期| 共13页
  • 作者单位

    Yeungnam Univ Sch Mech Engn Gyongsan 712749 South Korea;

    Yeungnam Univ Sch Mech Engn Gyongsan 712749 South Korea;

    Yeungnam Univ Sch Mech Engn Gyongsan 712749 South Korea;

    Yeungnam Univ Sch Mech Engn Gyongsan 712749 South Korea;

    Yeungnam Univ Sch Mech Engn Gyongsan 712749 South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号