...
首页> 外文期刊>RSC Advances >Infrared ray assisted microwave synthesis: a convenient method for large-scale production of graphitic carbon nitride with outstanding nitrogen photofixation ability
【24h】

Infrared ray assisted microwave synthesis: a convenient method for large-scale production of graphitic carbon nitride with outstanding nitrogen photofixation ability

机译:红外线辅助微波合成:一种方便的方法,用于大规模生产石墨氮化物,具有出色的氮素光复制能力

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Nitrogen fixation is the second most important chemical process in nature next to photosynthesis. Both the energy consumption and raw material costs are high for the conventional artificial nitrogen fixation technology, the Haber-Bosch process. Here, we report a convenient infrared ray assisted microwave method for synthesizing graphitic carbon nitride (g-C3N4) with outstanding nitrogen photofixation ability under visible light. XRD, N-2 adsorption, UV-vis, SEM, TEM, TPD, EPR, PL and photocurrent measurements were used to characterize the prepared catalysts. The results indicate that microwave treatment can form many irregular pores in the as-prepared g-C3N4, which cause an increase in the surface area and promote the separation rate of electrons and holes. More importantly, microwave treatment causes the formation of many nitrogen vacancies in the as-prepared g-C3N4. These nitrogen vacancies not only serve as active sites to adsorb and activate N-2 molecules but also promote interfacial charge transfer from catalysts to N-2 molecules, thus significantly improving the nitrogen photofixation ability. The higher nitrogen vacancies concentration of g-C3N4 prepared by infrared ray assisted microwave treatment causes more chemical adsorption sites, leading to a higher nitrogen photofixation performance. Moreover, the present process is a convenient method for large-scale production of g-C3N4 which is significantly important for practical applications.
机译:氮固定是光合作用旁边的第二个最重要的化学过程。传统人工氮固定技术,Haber-Bosch工艺的能量消耗和原材料成本都很高。在此,我们报告了一种方便的红外线辅助微波方法,用于在可见光下合成石墨碳氮化物(G-C3N4)的优异的氮气光致电力。使用XRD,N-2吸附,UV-VI,SEM,TEM,TPD,EPR,PL和光电流测量来表征制备的催化剂。结果表明,微波处理可以在制备的G-C3N4中形成许多不规则的孔,这导致表面积增加并促进电子和孔的分离速率。更重要的是,微波处理导致在制备的G-C3N4中形成许多氮空位。这些氮空位不仅用作吸附和活化N-2分子的活性位点,而且还促进从催化剂到N-2分子的界面电荷转移,从而显着提高氮气光复制能力。通过红外线辅助微波处理制备的G-C3N4的较高氮空位浓度导致更多化学吸附位点,导致较高的氮气光复制性能。此外,本发明方法是大规模生产G-C3N4的方便方法,这对于实际应用来说显着重要。

著录项

  • 来源
    《RSC Advances》 |2016年第51期|共7页
  • 作者单位

    Liaoning Shihua Univ Coll Chem Chem Engn &

    Environm Engn Fushun 113001 Peoples R China;

    Liaoning Shihua Univ Coll Chem Chem Engn &

    Environm Engn Fushun 113001 Peoples R China;

    Liaoning Shihua Univ Coll Chem Chem Engn &

    Environm Engn Fushun 113001 Peoples R China;

    Liaoning Shihua Univ Coll Chem Chem Engn &

    Environm Engn Fushun 113001 Peoples R China;

    Liaoning Shihua Univ Coll Chem Chem Engn &

    Environm Engn Fushun 113001 Peoples R China;

    Liaoning Shihua Univ Coll Chem Chem Engn &

    Environm Engn Fushun 113001 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号