...
首页> 外文期刊>RSC Advances >Graphene as a chain extender of polyurethanes for biomedical applications
【24h】

Graphene as a chain extender of polyurethanes for biomedical applications

机译:石墨烯作为生物医学应用的聚氨酯的链增量剂

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Amine-functionalized graphene has been chemically tagged within long-chain polyurethane molecules, using graphene as a chain extender to prepare a nanohybrid, and its novelty has been explored by comparing its properties with those of physically dispersed functionalized graphene in polyurethane based on di-ol as a chain extender. Chemical tagging has been confirmed through NMR studies and the nature of the interaction between the polymer matrix and graphene (nanofiller) is stronger in the chemically tagged nanohybrid compared to a nanohybrid prepared through physical mixture, as revealed from FTIR, UV-visible and PL spectroscopic measurement. A homogeneous dispersion of graphene platelets is achieved through a chemically tagged nanohybrid as against the agglomerated nanostructure found in a physically mixed nanohybrid. Enhancement of thermal properties and toughening of the nanohybrids is observed, whose extent is significantly higher in the chemically tagged nanohybrid due to greater interactions between the components and the uniform dispersion of nanofiller. Graphene-induced self-assembly from the nanometer scale to the micron level (step by step) was investigated through X-ray diffraction, small angle neutron scattering, atomic force microscopy and optical images in the order of nanometer, tens of nanometer, hundreds of nanometer and micron size, respectively. The effects of self-assembly on drug release and the biocompatible nature of the nanohybrids were monitored using HeLa cells, looking at cell viability, cell adhesion and fluorescence imaging. Significant sustained release of an anti-cancer drug was obtained using the chemically tagged nanohybrid and understanding gained of its kinetic behavior and mechanism. The greater biocompatibility of the chemically tagged nanohybrid was revealed through cell adhesion and fluorescence imaging, demonstrating a superior biomaterial which delivers the anti-cancer drug in a sustained manner. Hence, the developed nanohybrid is a potential biomaterial for drug delivery and tissue engineering.
机译:胺官能化的石墨烯的长链聚氨基甲酸乙酯分子内被化学标记,使用石墨烯作为增链剂来制备纳米杂化物,以及其新颖性已通过基于二醇在聚氨酯与这些物理分散官能化石墨烯的比较它的属性探索作为扩链剂。化学标记已经通过NMR研究证实和聚合物基体和石墨烯(纳米填料)之间的相互作用的性质是在化学上标记纳米杂化强与通过物理混合物制备的纳米杂化物,如从FTIR,紫外 - 可见和PL光谱显示测量。石墨烯薄片的均匀分散体通过化学标记纳米杂化物来实现作为对附聚的纳米结构在物理混合纳米杂化物中发现。热性质和纳米复合物的增韧的增强被观察到的,其范围是在化学上标记纳米杂化物显著更高由于部件和纳米填料的均匀分散之间的更大相互作用。石墨烯诱导的自组装从纳米尺度到微米级(分步)通过X射线衍射,小角中子散射,原子力显微镜和在纳米级光学图像,几十纳米,上百个调查纳米和微米尺寸,分别。使用HeLa细胞,在看细胞活力,细胞粘附和荧光成像的自组装对药物释放和纳米复合物的生物相容的性质的影响进行监测。显著持续使用化学标记纳米杂化获得抗癌药物的释放和理解,获得了它的动力学行为和机制。化学标记纳米杂化物中的较大的生物相容性是通过细胞粘附和荧光成像显示,展现优异的生物材料,其开出抗癌药以持续的方式。因此,开发纳米杂化物是药物输送和组织工程潜在的生物材料。

著录项

  • 来源
    《RSC Advances》 |2016年第63期|共13页
  • 作者单位

    Indian Inst Technol BHU Sch Mat Sci &

    Technol Varanasi 221005 Uttar Pradesh India;

    Banaras Hindu Univ Inst Med Sci Dept Dravyaguna Varanasi 221005 Uttar Pradesh India;

    Banaras Hindu Univ Inst Med Sci Ctr Expt Med &

    Surg Varanasi 221005 Uttar Pradesh India;

    Bhabha Atom Res Ctr Solid State Phys Div Bombay 400085 Maharashtra India;

    Univ Ottawa Dept Chem &

    Biol Engn Ind Membrane Res Inst 161 Louis Pasteur St Ottawa ON K1N 6N5 Canada;

    Banaras Hindu Univ Fac Sci Dept Chem Varanasi 221005 Uttar Pradesh India;

    Indian Inst Technol BHU Sch Mat Sci &

    Technol Varanasi 221005 Uttar Pradesh India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号