首页> 外文期刊>RSC Advances >Quantification of hot carrier thermalization in PbS colloidal quantum dots by power and temperature dependent photoluminescence spectroscopy
【24h】

Quantification of hot carrier thermalization in PbS colloidal quantum dots by power and temperature dependent photoluminescence spectroscopy

机译:功率和温度依赖性光致发光光谱法定量PBS胶体量子点中的热载波热化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

PbS QDs are studied as attractive candidates to be applied as hot carrier solar cell absorbers. The thermalization properties of PbS QDs are investigated with power and temperature dependent continuous wave photoluminescence (CWPL). Non-equilibrium hot carrier populations are generated by high energy laser excitation, the thermalization coefficient Q is estimated from the incident power dependent carrier temperature. A non-equilibrium hot carrier population 200 K above the lattice temperature is detected at mild illumination intensity. A higher energy carrier population and an increasing Q value are observed with rising lattice temperatures. State filling effects are proposed as a possible cause of the generation of the non-equilibrium hot carrier population and an enhanced electron-phonon coupling strength is suggested to account for the faster carrier cooling rate observed in closely packed Langmuir-Blodgett monolayer films. A thermalization coefficient, Q, as low as 6.55 W K-1 cm(-2) was found for the drop cast sample and suggests that PbS QDs are good candidates for practical hot carrier absorbers.
机译:PBS QDS被研究为有吸引力的候选人,以应用于热载体太阳能电池吸收器。采用功率和温度依赖性连续波光致发光(CWPL)研究了PBS QD的热化性能。通过高能激光激发产生非平衡热载体群,从入射功率依赖性载体温度估计热化系数Q.以温和的照明强度检测晶格温度上方的非平衡热载体群200K。通过上升的晶格温度观察到更高的能量载体群和增加的Q值。提出了状态填充效果作为产生非平衡热载体群体的可能原因,并且建议增强的电子 - 声子耦合强度来考虑在紧密包装的Langmuir-Blodgett单层膜中观察到的更快的载体冷却速率。对于下降浇铸样品,发现热化系数Q,低至6.55Wk-1cm(-2),并表明PBS QD是实际热载体吸收剂的良好候选者。

著录项

  • 来源
    《RSC Advances》 |2016年第93期|共10页
  • 作者单位

    UNSW Australia Sch Photovolta &

    Renewable Energy Engn Sydney NSW 2052 Australia;

    UNSW Australia Sch Photovolta &

    Renewable Energy Engn Sydney NSW 2052 Australia;

    UNSW Australia Sch Photovolta &

    Renewable Energy Engn Sydney NSW 2052 Australia;

    UNSW Australia Sch Photovolta &

    Renewable Energy Engn Sydney NSW 2052 Australia;

    UNSW Australia Sch Photovolta &

    Renewable Energy Engn Sydney NSW 2052 Australia;

    UNSW Australia Sch Photovolta &

    Renewable Energy Engn Sydney NSW 2052 Australia;

    UNSW Australia Sch Photovolta &

    Renewable Energy Engn Sydney NSW 2052 Australia;

    UNSW Australia Sch Photovolta &

    Renewable Energy Engn Sydney NSW 2052 Australia;

    UNSW Australia Sch Photovolta &

    Renewable Energy Engn Sydney NSW 2052 Australia;

    UNSW Australia Sch Photovolta &

    Renewable Energy Engn Sydney NSW 2052 Australia;

    UNSW Australia Sch Photovolta &

    Renewable Energy Engn Sydney NSW 2052 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号