...
首页> 外文期刊>RSC Advances >A simple, one-pot synthesis of molybdenum oxide-reduced graphene oxide composites in supercritical methanol and their electrochemical performance
【24h】

A simple, one-pot synthesis of molybdenum oxide-reduced graphene oxide composites in supercritical methanol and their electrochemical performance

机译:超临界甲醇中的氧化钼还原氧化烯氧化物复合材料的简单,单壶合成及其电化学性能

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A simple and green supercritical methanol (scMeOH) route is developed to tightly anchor molybdenum oxide (MoO2) nanoparticles on reduced graphene oxide (RGO). In scMeOH, graphene oxide is reduced, and MoO2 nanoparticles with sizes of 10-20 nm are simultaneously deposited on the basal plane of RGO in a short time without using any reducing agents or additives. When tested as an anode in lithium ion batteries, the MoO2-RGO composites show enhanced electrochemical performance compared to bare MoO2. The composite with a MoO2 loading of 37.0 wt% delivers a high reversible discharge capacity of 793 mA h g(-1) at 50 mA g(-1) and an excellent rate performance of 205 mA h g(-1) at 2.5 A g(-1). After 100 cycles of high rate testing of up to 50 A g(-1), the MoO2-RGO composite recovers most of its initial capacity. The improved electrochemical performance of MoO2-RGO can be attributed to the tight anchoring of nanosized MoO2 on RGO and the mesoporous structure of the composite. Consequently, the transport length of Li diffusion into the MoO2 phase is shortened, charge transfer kinetics at the electrode-electrolyte interface is facilitated, and the volume expansion associated with the conversion reaction can be accommodated.
机译:开发了一种简单和绿色的超临界甲醇(SCMEOH)途径,以将氧化钼(MOO2)纳米颗粒紧密地锚固在氧化物(RGO)上。在ScMeOH中,将石墨烯氧化物减少,并且在短时间内,在短时间内同时沉积10-20nm的MOO2纳米颗粒,而不使用任何还原剂或添加剂。当作为锂离子电池中的阳极进行测试时,与裸MOO2相比,MOO2-RGO复合材料显示出增强的电化学性能。 MOO2负载量为37.0wt%的复合材料可在50mA g(-1)的高可逆放电容量为793 mA hg(-1),并且在2.5 a g的情况下为205 mA hg(-1)的优异速率性能( -1)。在高达50Ag(-1)的高速率测试的100个循环之后,MOO2-RGO复合材料恢复其大部分初始容量。 MOO2-RGO的改善的电化学性能可以归因于纳米化MOO2对RGO和复合材料的中孔结构的紧密锚定。因此,缩短了Li扩散到Moo2相中的传输长度,促进了电极 - 电解质界面处的电荷转移动力学,并且可以容纳与转化反应相关的体积膨胀。

著录项

  • 来源
    《RSC Advances》 |2016年第110期|共12页
  • 作者单位

    Sungkyunkwan Univ Sch Mech Engn 2066 Seobu Ro Suwon 16419 Gyeonggi Do South Korea;

    Sungkyunkwan Univ Sch Mech Engn 2066 Seobu Ro Suwon 16419 Gyeonggi Do South Korea;

    Sungkyunkwan Univ Sch Mech Engn 2066 Seobu Ro Suwon 16419 Gyeonggi Do South Korea;

    Korea Inst Sci &

    Technol Ctr Energy Convergence Hwarang Ro 14 Gil 5 Seoul 02792 South Korea;

    Sungkyunkwan Univ Sch Mech Engn 2066 Seobu Ro Suwon 16419 Gyeonggi Do South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号