...
首页> 外文期刊>Acta biomaterialia >Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages
【24h】

Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages

机译:控制三维底物刚度以控制间充质干细胞对神经元或神经胶质谱系的命运

获取原文
获取原文并翻译 | 示例

摘要

The unlimited self-renewal and multipotency of stem cells provide great potential for applications in tissue engineering and regenerative medicine. The differentiation of stem cells can be induced by multiple factors including physical, chemical and biological cues. The fate of stem cells can be manipulated by deliberately controlling the interaction between stem cells and their microenvironment. The purpose of this study is to investigate the change in matrix stiffness under the influence of neurogenic differentiation of human mesenchymal stem cells (hMSCs). In this study, three-dimensional (3-D) porous scaffolds were synthesized by type I collagen (Col) and hyaluronic acid (HA). The elastic modulus of the 3-D substrates was modified by adjusting the concentration of 1-ethyl-3(3-dimethylaminopropyl) carbodiimide (EDC) as a crosslinking agent. The mechanical properties of Col-HA scaffolds were evaluated and the induction and characterization of hMSC differentiation toward neural lineages on substrates with different stiffnesses were studied. Using EDC of different concentrations for crosslinking, the stiffness of the matrices can be controlled in the range of 1-10 kPa for soft to stiff substrates, respectively. The results showed that MSCs were likely to differentiate into neuronal lineage in substrate at 1 kPa, while they transformed into glial cells in matrix at 10 kPa. The morphology and proliferation behavior of hMSCs responded to the different stiffnesses of substrates. Using this modifiable matrix, we can investigate the relationship between stem cell behavior and substrate mechanical properties in extracellular matrix-based biomimetic 3-D scaffolds. A substrate with controllable stiffness capable of inducing hMSCs specifically toward neuronal differentiation may be very useful as a tissue-engineered construct or substitute for delivering hMSCs into the brain and spinal cord. ? 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
机译:干细胞无限的自我更新和多能性为组织工程和再生医学的应用提供了巨大的潜力。干细胞的分化可以由多种因素诱导,包括物理,化学和生物学线索。可以通过故意控制干细胞与其微环境之间的相互作用来操纵干细胞的命运。这项研究的目的是调查在人类间充质干细胞(hMSCs)的神经源性分化影响下基质刚度的变化。在这项研究中,三维(3-D)多孔支架是由I型胶原蛋白(Col)和透明质酸(HA)合成的。通过调节作为交联剂的1-乙基-3(3-二甲基氨基丙基)碳二亚胺(EDC)的浓度,可以改变3-D基材的弹性模量。评价了Col-HA支架的力学性能,并研究了在不同刚度的基质上hMSC向神经谱系分化的诱导和表征。使用不同浓度的EDC进行交联,对于柔软到坚硬的基材,基质的刚度可以分别控制在1-10 kPa的范围内。结果表明,MSCs可能在1 kPa分化为基质的神经元谱系,而在10 kPa转化为基质的神经胶质细胞。 hMSCs的形态和增殖行为响应于底物的不同刚度。使用此可修改的矩阵,我们可以调查基于细胞外基质的仿生3-D支架中干细胞行为与基质机械性能之间的关系。具有可控制的刚度的底物能够诱导hMSC特异地向神经元分化,可能是非常有用的组织工程构造或替代品,用于将hMSC传递到大脑和脊髓中。 ? 2012年Acta Materialia Inc.由Elsevier Ltd.发行。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号