首页> 外文期刊>Acta biomaterialia >Valvular interstitial cell seeded poly(glycerol sebacate) scaffolds: Toward a biomimetic in vitro model for heart valve tissue engineering
【24h】

Valvular interstitial cell seeded poly(glycerol sebacate) scaffolds: Toward a biomimetic in vitro model for heart valve tissue engineering

机译:瓣膜间质细胞接种聚癸二酸甘油支架:建立用于心脏瓣膜组织工程的仿生体外模型

获取原文
获取原文并翻译 | 示例
           

摘要

Tissue engineered replacement heart valves may be capable of overcoming the lack of growth potential intrinsic to current non-viable prosthetics, and thus could potentially serve as permanent replacements in the surgical repair of pediatric valvular lesions. However, the evaluation of candidate combinations of cells and scaffolds lacks a biomimetic in vitro model with broadly tunable, anisotropic and elastomeric structural-mechanical properties. Toward establishing such an in vitro model, in the current study, porcine aortic and pulmonary valvular interstitial cells (i.e. biomimetic cells) were cultivated on anisotropic, micromolded poly(glycerol sebacate) scaffolds (i.e. biomimetic scaffolds). Following 14 and 28 days of static culture, cell-seeded scaffolds and unseeded controls were assessed for their mechanical properties, and cell-seeded scaffolds were further characterized by confocal fluorescence and scanning electron microscopy, and by collagen and DNA assays. Poly(glycerol sebacate) micromolding yielded scaffolds with anisotropic stiffnesses resembling those of native valvular tissues in the low stress-strain ranges characteristic of physiologic valvular function. Scaffold anisotropy was largely retained upon cultivation with valvular interstitial cells; while the mechanical properties of unseeded scaffolds progressively diminished, cell-seeded scaffolds either retained or exceeded initial mechanical properties. Retention of mechanical properties in cell-seeded scaffolds paralleled the accretion of collagen, which increased significantly from 14 to 28 days. This study demonstrates that valvular interstitial cells can be cultivated on anisotropic poly(glycerol sebacate) scaffolds to yield biomimetic in vitro models with which clinically relevant cells and future scaffold designs can be evaluated.
机译:组织工程替代心脏瓣膜可能能够克服目前无法生存的假体固有的生长潜力的不足,因此有可能在儿科瓣膜病变的外科手术修复中作为永久替代物。然而,细胞和支架的候选组合的评估缺乏具有广泛可调谐,各向异性和弹性体结构-机械性能的仿生体外模型。为了建立这样的体外模型,在当前研究中,将猪主动脉和肺动脉间质细胞(即,仿生细胞)培养在各向异性的,微模制的聚癸二酸甘油酯支架上(即,仿生支架上)。静态培养14天和28天后,评估细胞接种的支架和未接种的对照的机械性能,并通过共聚焦荧光和扫描电子显微镜以及胶原蛋白和DNA分析进一步表征细胞接种的支架。聚癸二酸甘油酯微模塑制得的支架具有各向异性的刚度,类似于生理上瓣膜功能的低应力-应变范围内的天然瓣膜组织。用瓣膜间质细胞培养后,支架的各向异性大部分得以保留;尽管无种子支架的机械性能逐渐降低,但具有细胞种子的支架却保留或超过了初始机械性能。在接种细胞的支架中保留的机械性能与胶原蛋白的增加平行,胶原蛋白的增加从14天增加到28天。这项研究表明,可以在各向异性的聚癸二酸甘油酯支架上培养瓣膜间质细胞,以产生仿生体外模型,利用该模型可以评估临床上相关的细胞和未来的支架设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号