首页> 外文期刊>Acta biomaterialia >Immunocamouflage: the biophysical basis of immunoprotection by grafted methoxypoly(ethylene glycol) (mPEG).
【24h】

Immunocamouflage: the biophysical basis of immunoprotection by grafted methoxypoly(ethylene glycol) (mPEG).

机译:免疫伪装:通过接枝的甲氧基聚(乙二醇)(mPEG)进行免疫保护的生物物理基础。

获取原文
获取原文并翻译 | 示例
           

摘要

Development of novel approaches for the immunomodulation of donor cells would have significant utility in transfusion and transplantation medicine. Immunocamouflage of cell surfaces by covalently grafted methoxypoly(ethylene glycol) (mPEG) (PEGylation) has emerged as a promising approach. While previous studies demonstrated the in vitro and in vivo efficacy of immunocamouflaged allogeneic blood cells, the biophysical mechanisms of immunoprotection have not been well-defined due to the fragility of intact cells. To overcome this limitation, polystyrene beads (1.2 and 8.0 microm) were used to elucidate the biophysical effects of polymer size, density and linker chemistry on charge camouflage and protein adsorption. These findings were correlated with biological studies using red blood cells and lymphocytes. Charge camouflage of both beads and cells was best achieved with long polymers. However, protein adsorption studies demonstrated an unexpected effect of target size. For 1.2 microm beads, decreased protein adsorption was best achieved with short (2 kDa) polymers whereas long chain (20 kDa) polymers were optimal for 8.0 microm particles. The biophysical findings correlated well with biological immunocamouflage as measured by particle electrophoresis and the inhibition of antibody-antigen (CD3, CD4 and CD28) recognition. Moreover, it was observed that antigen topography (CD28 vs. CD4) was of significance in selecting the appropriate polymer size. The biophysical interactions of PEGylated surfaces and macromolecules involve complex mechanisms dependent on the molecular weight, grafting concentration, target size and surface complexity. Cellular PEGylation strategies must be customized to account for target cell size, membrane complexity and antigen density and height.
机译:开发用于免疫调节供体细胞的新方法将在输血和移植医学中具有重要的用途。通过共价接枝的甲氧基聚(乙二醇)(mPEG)(PEGylation)的细胞表面的免疫伪装已成为一种有前途的方法。尽管先前的研究表明免疫隐蔽的同种异体血细胞的体外和体内功效,但由于完整细胞的脆弱性,免疫保护的生物物理机制尚未明确。为了克服这一限制,使用聚苯乙烯珠(1.2和8.0微米)来阐明聚合物尺寸,密度和接头化学性质对电荷伪装和蛋白质吸附的生物物理作用。这些发现与使用红细胞和淋巴细胞的生物学研究相关。长聚合物可以最好地实现珠和细胞的电荷伪装。但是,蛋白质吸附研究显示出靶标大小出乎意料的效果。对于1.2微米的珠,使用短(2 kDa)聚合物可最大程度地减少蛋白质的吸附,而长链(20 kDa)聚合物对于8.0微米颗粒则最佳。通过粒子电泳和抑制抗体抗原(CD3,CD4和CD28)的识别,生物物理发现与生物免疫伪装密切相关。此外,已观察到抗原形貌(CD28与CD4)在选择合适的聚合物大小方面具有重要意义。聚乙二醇化表面和大分子的生物物理相互作用涉及复杂的机制,具体取决于分子量,接枝浓度,目标大小和表面复杂性。必须定制细胞PEG化策略以考虑目标细胞大小,膜复杂性以及抗原密度和高度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号