...
首页> 外文期刊>Acta biomaterialia >Dynamics of hydrated polyurethane biomaterials: Surface microphase restructuring, protein activity and platelet adhesion.
【24h】

Dynamics of hydrated polyurethane biomaterials: Surface microphase restructuring, protein activity and platelet adhesion.

机译:水合聚氨酯生物材料的动力学:表面微相重组,蛋白质活性和血小板粘附。

获取原文
获取原文并翻译 | 示例
           

摘要

Microphase separation is a central feature of segmented polyurethane biomaterials and contributes to the biological response to these materials. In this study we utilized atomic force microscopy (AFM) to study the dynamic restructuring of three polyurethanes having soft segment chemistries of interest in biomedical applications. For each of the materials we followed the changes in near surface mechanical properties during hydration, as well as fibrinogen activity and platelet adhesion on these surfaces. Both AFM phase imaging and force mode analysis demonstrated that these polyurethane biomaterials underwent reorientation and rearrangement resulting in a net enrichment of hard domains at the surface. Fibrinogen activity and platelet adhesion on the polyurethane surfaces were found to decrease with increasing hydration time. The findings suggest that water-induced enrichment of hydrophilic hard domains at the surface changes the local surface physical and chemical properties in a way that influences the conformation of fibrinogen, changing the availability of the platelet-binding sites in the protein. This work demonstrates that the hydrated polyurethane biomaterial interface is a complex and dynamic environment where the surface chemistry is changing, altering the activity of fibrinogen and affecting blood platelet adhesion.
机译:微相分离是分段聚氨酯生物材料的主要特征,并有助于对这些材料的生物反应。在这项研究中,我们利用原子力显微镜(AFM)来研究三种在生物医学应用中具有软链段化学性质的聚氨酯的动态重组。对于每种材料,我们跟踪水合过程中近表面机械性能的变化,以及这些表面上纤维蛋白原的活性和血小板的粘附性。原子力显微镜相成像和力模式分析都表明,这些聚氨酯生物材料进行了重新定向和重新排列,从而导致表面上的硬区域净富集。发现纤维蛋白原活性和在聚氨酯表面上的血小板粘附力随着水合时间的增加而降低。这些发现表明水诱导的表面亲水性硬结构域的富集以影响纤维蛋白原构象的方式改变了局部表面的物理和化学性质,从而改变了蛋白质中血小板结合位点的可用性。这项工作表明,水合聚氨酯生物材料界面是一个复杂而动态的环境,在该环境中,表面化学发生了变化,从而改变了纤维蛋白原的活性并影响了血小板的粘附。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号