...
首页> 外文期刊>Acta biomaterialia >Chemical characterization of a degradable polymeric bone adhesive containing hydrolysable fillers and interpretation of anomalous mechanical properties.
【24h】

Chemical characterization of a degradable polymeric bone adhesive containing hydrolysable fillers and interpretation of anomalous mechanical properties.

机译:包含可水解填料的可降解聚合物骨粘合剂的化学表征和异常机械性能的解释。

获取原文
获取原文并翻译 | 示例
           

摘要

An experimental, light-curable, degradable polyester-based bone adhesive reinforced with phosphate glass particles ((P(2)O(5))(0.45)(CaO)(x)(Na(2)O)(0.55-)(x), x=0.3 or 0.4mol) or calcium phosphate (monocalcium phosphate/beta-tricalcium phosphate (MCPM/beta-TCP)) has been characterized. Early water sorption (8wt.% at 1week) by the unfilled set adhesive catalysed subsequent bulk degradation (4wt.% at 2weeks) and substantial decline in both elastic and storage moduli. Addition of phosphate glass fillers substantially enhanced this water sorption, catalysed greater bulk mass loss (40-50 and 52-55wt.%, respectively) but enabled generation of a microporous scaffold within 2weeks. The high levels of acidic polymer degradation products (38-50wt.% of original polymer) were advantageously buffered by the filler, which initially released primarily sodium trimetaphosphate (P(3)O93-). Calcium phosphate addition raised polymer water sorption to a lesser extent (16wt.%) and promoted intermediate early bulk mass loss (12wt.%) but simultaneous anomalous increase in modulus. This was attributed to MCPM reacting with absorbed water and beta-TCP to form more homogeneously dispersed brushite (CaHPO(4)) throughout the polymer. Between 2 and 10weeks, linear erosion of both polymer (0.5wt.%week(-1)) and composites (0.7-1.2wt.%week(-1)) occurred, with all fillers providing long-term buffer action through calcium and orthophosphate (PO43-) release. In conclusion, both fillers can raise degradation of bone adhesives whilst simultaneously providing the buffering action and ions required for new bone formation. Through control of water sorption catalysed filler reactions, porous structures for cell support or substantially stiffer materials may be generated.
机译:一个实验性的,可光固化的,可降解的聚酯基骨粘合剂,​​用磷酸盐玻璃颗粒((P(2)O(5))(0.45)(CaO)(x)(Na(2)O)(0.55-)( x),x = 0.3或0.4mol)或磷酸钙(磷酸一钙/β-磷酸三钙(MCPM /β-TCP))已被表征。未填充的固化胶粘剂的早期吸水率(1周时为8wt。%)催化了随后的整体降解(2周时为4wt。%),并且弹性模量和储能模量均大幅下降。磷酸盐玻璃填料的加入大大增强了这种水的吸收,催化了更大的堆积质量损失(分别为40-50和52-55wt。%),但是能够在2周内产生微孔支架。高含量的酸性聚合物降解产物(占原始聚合物的38-50wt。%)被填充剂缓冲,填充剂最初主要释放三偏磷酸钠(P(3)O93-)。磷酸钙的添加将聚合物的吸水率提高到较小程度(16wt。%),并促进了中间的早期本体质量损失(12wt。%),但同时模量异常增加。这归因于MCPM与吸收的水和β-TCP反应,形成遍布聚合物的更均匀分散的透钙磷石(CaHPO(4))。在2至10周之间,聚合物(0.5wt。%week(-1))和复合材料(0.7-1.2wt。%week(-1))都发生了线性侵蚀,所有填充剂均通过钙和钙提供长期的缓冲作用。正磷酸盐(PO43-)释放。总而言之,两种填充剂都可以提高骨骼粘合剂的降解能力,同时提供新骨骼形成所需的缓冲作用和离子。通过控制水吸附催化的填料反应,可以产生用于细胞支撑的多孔结构或基本上更硬的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号