首页> 外文期刊>ACM Journal on Emerging Technologies in Computing Systems >Theory and Analysis of Generalized Mixing and Dilution of Biochemical Fluids Using Digital Microfluidic Biochips
【24h】

Theory and Analysis of Generalized Mixing and Dilution of Biochemical Fluids Using Digital Microfluidic Biochips

机译:使用数字微流控生物芯片对生化液进行通用混合和稀释的理论和分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Digital microfluidic (DMF) biochips are recently being advocated for fast on-chip implementation of biochemical laboratory assays or protocols, and several algorithms for diluting and mixing of reagents have been reported. However, all methods for such automatic sample preparation suffer from a drawback that they assume the availability of input fluids in pure form, that is, each with an extreme concentration factor (CF) of 100%. In many real-life scenarios, the stock solutions consist of samples/reagents with multiple CFs. No algorithm is yet known for preparing a target mixture of fluids with a given ratio when its constituents are supplied with random concentrations. An intriguing question is whether or not a given target ratio is feasible to produce from such a general input condition. In this article, we first study the feasibility properties for the generalized mixing problem under the (1 : 1) mix-split model with an allowable error in the target CFs not exceeding 1/2(d), where the integer d is user specified and denotes the desired accuracy level of CF. Next, an algorithm is proposed which produces the desired target ratio of N reagents in O(Nd) mix-split steps, where N (>= 3) denotes the number of constituent fluids in the mixture. The feasibility analysis also leads to the characterization of the total space of input stock solutions from which a given target mixture can be derived, and conversely, the space of all target ratios, which are derivable from a given set of input reagents with arbitrary CFs. Finally, we present a generalized algorithm for diluting a sample S in minimum (1 : 1) mix-split steps when two or more arbitrary concentrations of S (diluted with the same buffer) are supplied as inputs. These results settle several open questions in droplet-based algorithmic microfluidics and offer efficient solutions for a wider class of on-chip sample preparation problems.
机译:近来,人们提倡数字微流控(DMF)生物芯片用于芯片上生物化学实验室测定或方案的快速实施,并且已经报道了几种稀释和混合试剂的算法。但是,用于这种自动样品制备的所有方法都具有一个缺点,即它们假定输入流体为纯净形式,即每种都具有100%的极限浓缩系数(CF)。在许多实际场景中,储备溶液由具有多个CF的样品/试剂组成。当以随机的浓度提供其组分时,还没有一种算法可以制备具有给定比例的目标流体混合物。一个有趣的问题是,从这样的一般输入条件产生给定的目标比率是否可行。在本文中,我们首先研究(1:1)混合分割模型下广义混合问题的可行性,其中目标CF的允许误差不超过1/2(d),其中用户指定整数d并表示所需的CF精度等级。接下来,提出了一种算法,该算法在O(Nd)混合拆分步骤中生成N试剂的所需目标比例,其中N(> = 3)表示混合物中组成流体的数量。可行性分析还可以表征从中可以得出给定目标混合物的进料储备溶液的总空间,相反,还可以表征所有目标比例的空间,这些目标比率可以从给定的具有任意CF的进样试剂的集合中得出。最后,当提供两个或多个任意浓度的S(用相同的缓冲液稀释)作为输入时,我们提出了一种用于以最少(1:1)的混合分裂步骤稀释样品S的通用算法。这些结果解决了基于液滴的算法微流体技术中的几个悬而未决的问题,并为更广泛的芯片上样品制备问题提供了有效的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号