...
【24h】

Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs)

机译:两级微流控芯片,用于选择性分离循环肿瘤细胞(CTC)

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Over the past few decades, circulating tumor cells (CTCs) have been studied as a means of overcoming cancer. However, the rarity and heterogeneity of CTCs have been the most significant hurdles in CTC research. Many techniques for,CTC isolation have been developed and can be classified into positive enrichment (i.e., specifically isolating target cells using cell size, surface protein expression, and so on) and negative enrichment (i.e., specifically eluting non-target cells). Positive enrichment methods lead to high purity, but could be biased by their selection criteria, while the negative enrichment methods have relatively low purity, but can isolate heterogeneous CTCs. To compensate for the known disadvantages of the positive and negative enrichments, in this study we introduced a two-stage microfluidic chip. The first stage involves a microfluidic magnetic activated cell sorting (mu-MACS) chip to elute white blood cells (WBCs). The second stage involves a geometrically activated surface interaction (GASI) chip for the selective isolation of CTCs. We observed up to 763-fold enrichment in cancer cells spiked into 5 mL of blood sample using the mu-MACS chip at 400 mu L/min flow rate. Cancer cells were successfully separated with separation efficiencies ranging from 10.19% to 22.91% based on their EpCAM or HER2 surface protein expression using the GASI chip at a 100 mu L/min flow rate. Our two-stage microfluidic chips not only isolated CFCs from blood cells, but also classified heterogeneous CFCs based on their characteristics. Therefore, our chips can contribute to research on CTC heterogeneity of CTCs, and, by extension, personalized cancer treatment. (C) 2014 Elsevier B.V. All rights reserved.
机译:在过去的几十年中,已经研究了循环肿瘤细胞(CTC)作为克服癌症的一种手段。然而,CTC的稀有性和异质性一直是CTC研究中最重要的障碍。已经开发出许多用于CTC分离的技术,并且可以将其分类为正富集(即,使用细胞大小,表面蛋白表达等来特异性分离靶细胞)和负富集(即,特异性地洗脱非靶细胞)。正向富集方法可产生高纯度,但可能因其选择标准而有偏差,而负向富集方法具有相对较低的纯度,但可分离异质CTC。为了补偿正向富集和负向富集的已知缺点,在这项研究中,我们引入了两阶段微流控芯片。第一阶段涉及微流控磁激活细胞分选(mu-MACS)芯片以洗脱白细胞(WBC)。第二阶段涉及用于选择性隔离CTC的几何激活表面相互作用(GASI)芯片。我们使用mu-MACS芯片以400μL / min的流速观察到掺入5 mL血液样本中的癌细胞中多达763倍的富集。使用GASI芯片以100μL / min的流速,基于EpCAM或HER2表面蛋白的表达,成功分离出癌细胞的分离效率为10.19%至22.91%。我们的两级微流控芯片不仅从血细胞中分离出CFC,还根据其特性对异类CFC进行了分类。因此,我们的芯片可以为研究CTC的CTC异质性做出贡献,并进而有助于个性化癌症治疗。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号