首页> 外文期刊>AAPG Bulletin >Geologically constrained electrofacies classification of fluvial deposits: An example from the Cretaceous Mesaverde Group, Uinta and Piceance Basins
【24h】

Geologically constrained electrofacies classification of fluvial deposits: An example from the Cretaceous Mesaverde Group, Uinta and Piceance Basins

机译:河流沉积物的地质约束电相分类:以白垩纪Mesaverde组,Uinta和Piceance盆地为例

获取原文
获取原文并翻译 | 示例
           

摘要

Statistical classification methods consisting of the k-nearest neighbor algorithm (k-NN), a probabilistic clustering procedure (PCP), and a novel method that incorporates outcrop-based thickness criteria through the use of well log indicator flags are evaluated for their ability to distinguish fluvial architectural elements of the upper Mesaverde Group of the Piceance and Uinta Basins as distinct electrofacies classes. Data used in training and testing of the classification methods come from paired cores and well logs consisting of 1626 wireline log curve samples each associated with a known architectural element classification as determined from detailed sedimentologic analysis of cores (N = 9). Thickness criteria are derived from outcrop-based architectural element measurements of the upper Mesaverde Group. Through an approach that integrates select classifier results with thickness criteria, an overall accuracy (number of correctly predicted samples/ total testing samples) of 83.6% was achieved for a four-class fluvial architectural element realization. Architectural elements were predicted with user's accuracies (accuracy of an individual class) of 0.891, 0.376, 0.735, and 0.985 for the floodplain, crevasse splay, single-story channel body, and multi-story channel body classes, respectively. Without the additional refinement by incorporation of thickness criteria, the k-NN and PCP classifiers produced similar results. In both the k-NN and PCP techniques, the combination of gamma ray and bulk density wireline log curves proved to be the most useful assemblage tested.
机译:统计分类方法包括k近邻算法(k-NN),概率聚类过程(PCP),以及通过使用测井仪指示标志结合露头厚度准则的新方法,以评估其分类能力。将Piceance和Uinta盆地的Mesaverde组上部的河流建筑元素区分为不同的电相类。分类方法的训练和测试中使用的数据来自成对的岩心和测井曲线,该测井曲线由1626条测井曲线样本组成,每个样本都与已知的建筑元素分类有关,该分类由岩心的详细沉积学分析确定(N = 9)。厚度标准来自上Mesaverde组的基于露头的建筑元素测量结果。通过将选择的分类器结果与厚度标准集成在一起的方法,对于四类河流建筑元素实现,总体精度(正确预测的样本数/总测试样本数)达到83.6%。预测用户对于洪泛区,裂隙张开,单层通道主体和多层通道主体类别的用户准确度(单个类别的准确性)分别为0.891、0.376、0.735和0.985。如果不通过合并厚度标准进行其他改进,则k-NN和PCP分类器会产生相似的结果。在k-NN和PCP技术中,伽玛射线和堆积密度电缆测井曲线的组合被证明是最有用的组合测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号