首页> 外文期刊>AAPG Bulletin >Estimation of kerogen porosity in source rocks as a function of thermal transformation: Example from the Mowry Shale in the Powder River Basin of Wyoming
【24h】

Estimation of kerogen porosity in source rocks as a function of thermal transformation: Example from the Mowry Shale in the Powder River Basin of Wyoming

机译:烃源岩中干酪根孔隙度随热变函数的估算:以怀俄明州粉河盆地莫里页岩为例

获取原文
获取原文并翻译 | 示例
       

摘要

Evaluations of porosity relevant to hydrocarbon storage capacity in kerogen-rich mudrocks (i.e., source rocks) have thus far been plagued with ambiguity, in large part because conventional core and petrophysical techniques were not designed for this rock type. The growing recognition of an intraparticle organic nanopore system that is related to thermal maturity is beginning to clarify this ambiguity. This mode of porosity likely evolved with the thermal transformation of labile kerogen and probably neither depends nor interacts (except perhaps chemically) with previously assumed "matrix" or "mineral" porosity that is dominated by bound water, and that may be largely irrelevant to hydrocarbon storage capacity in these rocks. To address this newly recognized and important nonmatrix kerogen pore system, that is arguably the dominant hydrocarbon storage and mobility network in these rocks, we introduce a relatively simple kinetic model that describes porosity development within kerogen as a function of thermal maturation. Kerogen porosity development is estimated within the upper Albian Mowry Shale in the Powder River Basin of Wyoming to illustrate the approach. Relevant storage capacity is considered to have evolved with thermal decomposition of organic matter during catagenesis, where we estimate that kerogen porosity does not typically exceed 3% of bulk rock volume. Modeled oil-in-place estimates are comparable to residual oil estimates from pyrolysis data (S1) at lower maturities, but exceed pyrolytic S1 yields at higher maturities. We hypothesize, therefore, that a subsurface kinetic porosity model might represent a means to account for S1 losses at surface conditions and to circumvent difficulties surrounding estimations of expulsion efficiencies that are inherent to more traditional mass balance calculations.
机译:迄今为止,评价与富含干酪根的泥岩(即烃源岩)中的碳氢化合物储存能力有关的孔隙度一直受到含混不清的困扰,这在很大程度上是因为常规岩心和岩石物理技术不是针对这种岩石设计的。与热成熟度相关的颗粒内有机纳米孔系统的日益增长的认识开始澄清这种歧义。这种孔隙率模式可能随不稳定干酪根的热转化而发展,并且可能既不依赖于(也可能化学上除外)与先前假定的“母体”或“矿物”孔隙率(由结合水决定),也可能与碳氢化合物无关,这些岩石的储存能力。为了解决这个新认识到的重要的非基质干酪根孔隙系统,可以说是这些岩石中占主导地位的碳氢化合物储藏和流动性网络,我们引入了一个相对简单的动力学模型,该模型描述了干酪根中的孔隙度随热成熟度的变化。在怀俄明州粉河盆地的上阿比恩莫里页岩中估计了干酪根的孔隙度发展,以说明该方法。在催化作用期间,相关的存储容量被认为是随着有机物的热分解而发展的,据我们估计,干酪根的孔隙率通常不会超过散装岩石体积的3%。在较低的成熟度下,模拟的就地石油估算值可与热解数据(S1)中的剩余油估算值相媲美,但在较高的成熟度下,其热解S1产量就超过了。因此,我们假设地下动力孔隙度模型可能代表一种解决表面条件下S1损失并规避更传统质量平衡计算所固有的排挤效率估算难题的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号