...
首页> 外文期刊>AAPG Bulletin >Damage and plastic deformation of reservoir rocks: Part 2. Propagation of a hydraulic fracture
【24h】

Damage and plastic deformation of reservoir rocks: Part 2. Propagation of a hydraulic fracture

机译:储层岩石的破坏和塑性变形:第2部分。水力压裂扩展

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The aim of part 2 is to understand the development of complex hydraulic fractures (HFs) that are commonly observed in the field and in experiments but are not explained by most models. Our approach uses finite element simulations and a numerical rheology developed in part 1 to model damage fracturing, the fracturing process by damage propagation in a rock with elastic-plastic damage rheology. Using this rheology and a dynamic solution technique, we investigate the effect of far-field stresses and pressure distribution in the fracture on the geometric complexity of the fractures. The model is for the vertical propagation of an HF segment into an overlying bed located far from borehole effects. The layer is 2.3 m (7.5 ft) tall, has elastic-plastic damage rheology, and contains a 0.3-m (l-ft)-tall initial vertical fracture. Vertical and horizontal tectonic loads of 50 MPa (7252 psi) and 10 to 45 MPa (1450-6527 psi) are established, and then an internal fracture pressure of 10 MPa/s (1450 psi/s) is applied until the layer fails. The simulated fracturing is sensitive to the stress state and generated patterns range from single straight fractures to treelike networks. Reducing differential stress increases the injection pressure required to fracture and promotes off-plane damage, which increases fracture complexity. Consecutive periods of nonuniform weakening followed by unstable rupture generate multiple branches and segments. We find that the processes that form HF complexity occur under a range of in-situ reservoir conditions and are likely to contribute to complex far-field fracture geometry and enhanced network connectivity.
机译:第2部分的目的是了解复杂的水力压裂(HF)的发展,这些压裂在现场和实验中通常会观察到,但大多数模型并未对此进行解释。我们的方法使用了有限元模拟和在第1部分中开发的数值流变学来建模破坏破裂,破坏破裂是通过弹塑性破坏流变在岩石中传播破坏来实现的。使用这种流变学和动态求解技术,我们研究了裂缝中远场应力和压力分布对裂缝几何复杂度的影响。该模型用于将HF段垂直传播到远离钻孔影响的上覆岩层中。该层高2.3 m(7.5 ft),具有弹塑性破坏流变学,并包含0.3 m(l ft)高的初始垂直裂缝。建立了50 MPa(7252 psi)和10至45 MPa(1450-6527 psi)的垂直和水平构造载荷,然后施加10 MPa / s(1450 psi / s)的内部断裂压力,直到该层破裂。模拟的压裂对应力状态敏感,生成的模式范围从单条直缝到树状网络。减小压差会增加断裂所需的注射压力,并促进平面外破坏,从而增加断裂复杂性。连续的不均匀弱化然后不稳定破裂的时期会产生多个分支和节段。我们发现,形成HF复杂性的过程发生在一系列原位油藏条件下,并且可能有助于复杂的远场裂缝几何形状和增强的网络连通性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号