首页> 外文期刊>ACM Transactions on Design Automation of Electronic Systems >Hardware-Software Codesign of an Embedded Multiple-Supply Power Management Unit for Multicore SoCs Using an Adaptive Global/Local Power Allocation and Processing Scheme
【24h】

Hardware-Software Codesign of an Embedded Multiple-Supply Power Management Unit for Multicore SoCs Using an Adaptive Global/Local Power Allocation and Processing Scheme

机译:使用自适应全局/本地电源分配和处理方案的多核SoC嵌入式多电源电源管理单元的硬件-软件协同设计

获取原文
获取原文并翻译 | 示例
       

摘要

Power dissipation has become a critical design constraint for the growth of modern multicore systems due to increasing clock frequencies, leakage currents, and system parasitics. To overcome this urgent crisis, this article presents an embedded platform for on-chip power management of a multicore System-on-Chip (SoC). The design involves the development of two key components, from the hardware to the software level. From the hardware perspective, a multiple-supply power management unit is proposed and is implemented using a Single-Inductor Multiple-Output (SIMO) DC-DC converter. To dynamically respond to the sensed instantaneous power demands and to accurately control the power delivery to the processor cores, the power management unit employs a software-defined adaptive global/local power allocation feedback controller. The proposed controller is designed using the hardware-software codesign methodology to uniquely control the SIMO converter during various operation scenarios. This is achieved using several embedded software control algorithms that operate synergetically to ensure efficient and reliable system operation. The hardware-software codesign technique also allows the SIMO controller to be integrated with future microprocessor cores. Therefore, by employing the vast amount of on-chip resources, the converter can perform effective power processing to provide the most power-optimal voltages at the hardware level. Such an embedded power management module leads to an integrated, power-aware, and autonomous SoC design that is independent of additional external hardware control, thereby reducing on-chip area and system complexity. In this design, each power output from the SIMO converter provides a step-up/down voltage conversion, thereby enabling a wide range of variable supply voltage. An adaptive global/local power allocation control algorithm is employed to significantly improve Dynamic Voltage and Frequency Scaling (DVFS) tracking speed and line/load regulation, while still retaining low cross-regulation. Designed with a 180nm CMOS process, the converter precisely provides three independently variable power outputs from 0.9 V to 3.0 V, with a total power range from 33 mW to 900 mW. A very fast load transient response of 3.25 μs is achieved, in response to a 67.5-mA full-step load current change. The design thus provides a cost-effective power management solution to achieve a robust, fast-transient, DVFS-compatible multicore SoC.
机译:由于时钟频率,泄漏电流和系统寄生效应的增加,功耗已成为现代多核系统发展的关键设计约束。为了克服这一紧急危机,本文提出了一种嵌入式平台,用于多核片上系统(SoC)的片上电源管理。该设计涉及从硬件到软件级别的两个关键组件的开发。从硬件的角度出发,提出了一种多电源电源管理单元,并使用单电感多输出(SIMO)DC-DC转换器来实现。为了动态响应感测到的瞬时功率需求并准确控制向处理器内核的功率传输,功率管理单元采用了软件定义的自适应全局/局部功率分配反馈控制器。所提出的控制器是使用软硬件代码签名方法设计的,可以在各种操作场景下唯一地控制SIMO转换器。这是通过使用几种嵌入式软件控制算法来实现的,这些算法协同运行以确保高效可靠的系统运行。硬件-软件代码签名技术还允许SIMO控制器与将来的微处理器内核集成。因此,通过使用大量的片上资源,转换器可以执行有效的功率处理,以在硬件级别提供最大的功率最佳电压。这种嵌入式电源管理模块可实现集成的,具有功耗意识的自主SoC设计,该设计独立于其他外部硬件控制,从而降低了片上面积和系统复杂性。在这种设计中,从SIMO转换器输出的每个功率都提供了升压/降压转换,从而实现了宽范围的可变电源电压。采用自适应全局/局部功率分配控制算法可显着提高动态电压和频率缩放(DVFS)跟踪速度以及线路/负载调节,同时仍保持较低的交叉调节。该转换器采用180nm CMOS工艺进行设计,可精确提供0.9 V至3.0 V的三个独立可变功率输出,总功率范围为33 mW至900 mW。响应67.5mA全步级负载电流变化,可实现3.25μs的非常快的负载瞬态响应。因此,该设计提供了一种经济高效的电源管理解决方案,以实现强大,快速瞬态,兼容DVFS的多核SoC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号