...
首页> 外文期刊>Biochimica et biophysica acta. Molecular cell research >Between a rock and a hard place: Trace element nutrition in Chlamydomonas
【24h】

Between a rock and a hard place: Trace element nutrition in Chlamydomonas

机译:在岩石和坚硬的地方之间:衣藻中的微量元素营养

获取原文
获取原文并翻译 | 示例

摘要

Photosynthetic organisms are among the earliest life forms on earth and their biochemistry is strictly dependent on a wide range of inorganic nutrients owing to the use of metal cofactor-dependent enzymes in photosynthesis, respiration, inorganic nitrogen and sulfur assimilation. Chlamydomonas reinhardtii is a photosynthetic eukaryotic model organism for the study of trace metal homeostasis. Chlamydomonas spp. are widely distributed and can be found in soil, glaciers, acid mines and sewage ponds, suggesting that the genus has significant capacity for acclimation to micronutrient availability. Analysis of the draft genome indicates that metal homeostasis mechanisms in Chlamydomonas represent a blend of mechanisms operating in animals, plants and microbes. A combination of classical genetics, differential expression and genomic analysis has led to the identification of homologues of components known to operate in fungi and animals (e.g., Foxl, Ftr1, Fre1, Fer1, Ctr1/2) as well as novel molecules involved in copper and iron nutrition (CrT1, Fea1/2). Besides activating iron assimilation pathways, iron-deficient Chlamydomonas cells re-adjust metabolism by reducing light delivery to photosystem I (to avoid photo-oxidative damage resulting from compromised FeS clusters) and by modifying the ferredoxin profile (perhaps to accommodate preferential allocation of reducing equivalents). Upregulation of a MnSOD isoform may compensate for loss of FeSOD. Ferritin could function to buffer the iron released from programmed degradation of iron-containing enzymes in the chloroplast. Some metabolic adjustments are made in anticipation of deficiency while others occur only with sustained or severe deficiency. Copper-deficient Chlamydomonas cells induce a copper assimilation pathway consisting of a cell surface reductase and a Cu+ transporter (presumed CTR homologue). There are metabolic adaptations in addition: the synthesis of "back-up" enzymes for plastocyanin in photosynthesis and the ferroxidase in iron assimilation plus activation of alternative oxidase to handle the electron "overflow" resulting from reduced cytochrome oxidase function. Oxygen-dependent enzymes in the tetrapyrrole pathway (coproporphyrinogen oxidase and aerobic oxidative cyclase) are also increased in expression and activity by as much as 10-fold but the connection between copper nutrition and tetrapyrroles is not understood. The copper-deficiency responses are mediated by copper response elements that are defined by a GTAC core sequence and a novel metalloregulator, Crr1,which uses a zinc-dependent SBP domain to bind to the CuRE. The Chlamydomonas model is ideal for future investigation of nutritional manganese deficiency and selenoenzyme function. It is also suited for studies of trace nutrient interactions, nutrition-dependent metabolic changes, the relationship between photo-oxidative stress and metal homeostasis, and the important questions of differential allocation of limiting metal nutrients (e.g., to respiration vs. photosynthesis). (c) 2006 Elsevier B.V. All rights reserved.
机译:光合生物是地球上最早的生命形式之一,由于在光合作用,呼吸作用,无机氮和硫的同化中使用了金属辅因子依赖性酶,因此它们的生物化学严格依赖于多种无机营养物。莱茵衣藻(Chlamydomonas reinhardtii)是一种光合真核生物模型生物,用于研究痕量金属稳态。衣藻属。广泛分布并且可以在土壤,冰川,酸性矿山和污水池中发现,这表明该属具有适应微量营养素供应的显着能力。对草案基因组的分析表明,衣藻中的金属稳态机制代表了在动物,植物和微生物中起作用的机制的混合。经典遗传学,差异表达和基因组分析的结合已导致鉴定出已知在真菌和动物中起作用的组分(例如Foxl,Ftr1,Fre1,Fer1,Ctr1 / 2)的同源物,以及涉及铜的新型分子和铁营养(CrT1,Fea1 / 2)。除激活铁同化途径外,缺铁衣原体细胞还通过减少向光系统I的光传输(避免由于受损的FeS簇而造成的光氧化损伤)和修改铁氧还蛋白谱(可能适应还原当量的优先分配)来重新调节新陈代谢。 )。 MnSOD亚型的上调可补偿FeSOD的损失。铁蛋白可起到缓冲叶绿体中含铁酶程序性降解所释放的铁的作用。一些代谢调整是在预期缺乏的情况下进行的,而其他代谢调整仅在持续或严重缺乏的情况下发生。铜缺乏的衣原体细胞诱导由细胞表面还原酶和Cu +转运蛋白(推测的CTR同源物)组成的铜同化途径。另外还有代谢适应性:在光合作用中合成质体蓝蛋白的“备用”酶,在铁同化中合成铁氧化酶,并激活其他氧化酶以处理由于细胞色素氧化酶功能降低而引起的电子“溢出”。四吡咯途径中的氧依赖性酶(共卟啉原氧化酶和有氧氧化环化酶)的表达和活性也增加了多达10倍,但铜营养与四吡咯之间的联系尚不清楚。缺铜反应是由铜反应元件介导的,铜反应元件由GTAC核心序列和新型金属调节剂Crr1定义,后者使用依赖锌的SBP结构域与CuRE结合。衣藻模型是未来研究营养性锰缺乏症和硒酶功能的理想选择。它也适用于研究微量养分相互作用,营养依赖的代谢变化,光氧化应激与金属稳态之间的关系以及限制金属养分差异分配的重要问题(例如,呼吸与光合作用)。 (c)2006 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号