首页> 外文期刊>Journal of Sound and Vibration >Automotive turbocharger rotordynamics: Interaction of thrust and radial bearings in shaft motion simulation
【24h】

Automotive turbocharger rotordynamics: Interaction of thrust and radial bearings in shaft motion simulation

机译:汽车涡轮增压器圈子动力学:轴运动模拟中推力和径向轴承的相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

The analysis of turbocharger rotordynamics has been conducted so far focusing solely on the effect of radial bearings on the non-linear oscillations of the rotor-bearing system. It is well known that the oil-film concentrated in the rotor's journal bearings is the root cause of the system's occurring nonlinear vibrations. Nevertheless, the rotor-assembly requires to be supported in the axial direction as well in order to compensate the various thrust load effects occurring during operation. This paper investigates the influence of hydrodynamic thrust bearings on the nonlinear oscillations and bifurcations of the rotor system in terms of the thrust- and radial bearing interaction during run-ups. For that purpose the conventional rotordynamics environment is extended by integrating a nonlinear hydrodynamics thrust bearing model suited for transient run-up simulations. Focus is set on the impact of two major parameters that drive the virtual prototype process of new rotor-assemblies: the shaft diameter and the thrust bearing's position along the shaft. It is shown that for a given set of boundaries the thrust bearing's position along the shaft can have either positive, neutral or negative influence on shaft motion. Furthermore, certain combinations of shaft diameter and thrust bearing positions could occur that may have a negative impact on the thrust bearing itself, for example by means of the associated load capacity. In this regard, it is demonstrated that simulating the thrust and radial bearing interaction during run-ups is mandatory not only for shaft motion purposes, but for designing a robust thrust bearing as well. Finally, with the help of correlation coefficients and response surface methods, trends are identified that set guidelines while designing a new turbocharger center section. (C) 2019 Elsevier Ltd. All rights reserved.
机译:涡轮增压器转子动力学的分析迄今已进行的仅仅关注的径向轴承上的转子轴承系统的非线性振荡的效果。众所周知的是,油膜集中在转子的轴颈轴承是系统的存在的非线性振动的根本原因。然而,转子组件要求在轴向方向上,以补偿操作过程中出现的各种推力载荷作用被支持为好。本文研究的上非线性振荡和转子系统的分叉流体动力止推轴承中在运行窗口的止推和径向轴承的相互作用方面的影响。用于该目的的现有转子动力学环境通过积分适合瞬时起动模拟非线性流体动力学推力轴承模型延长。焦点设置上的驱动的新的转子组件的虚拟原型过程两个主要参数的影响:所述轴的直径和推力轴承的沿轴的位置。结果表明,对于一组给定边界的推力轴承的沿轴的位置可以对轴的运动是正的,中性或负影响。此外,可能发生轴的直径和推力轴承位置的某些组合可能对推力轴承本身由相关联的负载容量的装置产生负面影响,例如。在这方面,据证实模拟在运行窗口的推力和径向轴承的相互作用是必需的,不仅对于轴运动的目的,但用于设计鲁棒推力轴承为好。最后,相关系数和响应面方法的帮助下,趋势确定了设定的准则,同时设计新的涡轮增压器的中心部分。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号