首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Dissociation of carbon dioxide in arrays of microchannel plasmas
【24h】

Dissociation of carbon dioxide in arrays of microchannel plasmas

机译:微通道等离子体阵列中二氧化碳的解离

获取原文
获取原文并翻译 | 示例
           

摘要

Energy efficiencies above eta = 12% have been observed for the non thermal dissociation of pure carbon dioxide (i.e. in the absence of carrier gas) at atmospheric pressure in arrays of microchannel plasmas. Microplasma 'chips' similar to those developed for the plasmachemical production of ozone from O-2 or air (Kim et al 2017 Eur. Phys. J. Spec. Top. 226 2923) generate spatially uniform, abnormal glow plasmas in >= 1 atm. of CO2 and consume 1-8 W of average power when driven by sinusoidal or bipolar pulsed voltage waveforms (pulse repetition frequency of 15-20 kHz). Fabricated in nanoporous alumina, the microchannels are 250 mu m in width. 150 mu m in depth, and 3 an in length, and the array on each chip typically comprises 12 channels. Intense emission from microplasma arrays, recorded over the similar to 335-700 nm spectral interval when E/N approximate to 100 Td, is dominated by CO2+ ((A) over tilde (2)Pi -> (X) over tilde (2)Pi) fluorescence which indicates that both CO2+ and electronically-excited CO (e.g. CO*) are generated primarily by multistep electron impact processes. Dissociative recombination of the CO2+ ((X) over tilde) ground state species appears to also be a contributing factor in CO* production. Owing to the modest power consumption and active volume of a single chip, the CO generation efficiency for a single array is 45 g kWh(-1) for a CO2 flow rate of 70 sccm and the dissociation efficiency is 4.3%. The connection of four chips in tandem in a commercial module increases the CO2 dissociation efficiency to 20% and similar to 11% for flow rates of 70 sccm and 200 sccm, respectively. Data acquired with multiple chips confirms the scalability of the CO2 dissociation process, and suggests the economic viability of the commercial production of CO for the synthesis of formic acid, methanol, and syngas.
机译:对于纯二氧化碳的非热解离(即,在没有载气的情况下在微通道等离子体阵列中的大气压下,已经观察到ETA = 12%以上的能量效率。微血管生物的“芯片”类似于O-2或Air的臭氧生产臭氧(Kim等人2017欧元)的碎片。物理。J. Spec。顶部。226 2923)在> = 1个ATM中产生空间均匀,异常发光等离子体。通过正弦或双极脉冲电压波形(脉冲重复频率为15-20kHz),CO2和平均功率的消耗1-8W。在纳米孔氧化铝中制造,微通道宽度为250μm。深度为150μm,并且3个长度,并且每个芯片上的阵列通常包括12个通道。当E / N近似为100 TD时,从微血管阵列的激发发射,记录在类似于335-700nm的频谱间隔,由TILDE(2)上的CO2 +((a)over tilde(a)over tilde(2)pi->(x)主导PI)荧光,其表明CO 2 +和电子激发CO(例如CO *)主要由MultiSep电子冲击过程产生。 CO 2 +((x)ovidode的离缀重组似乎也是CO *生产中的贡献因素。由于单片机的适度功耗和功耗,单个阵列的CO GANGINGY效率为45g kWh(-1),对于70 sccm的二氧化碳流速,解离效率为4.3%。在商业模块中串联串联的四个芯片的连接将二氧化碳解离效率提高至20%,类似于70 sccm和200 sccm的流速的11%。具有多个芯片的数据确认了CO2解离过程的可扩展性,并提出了CO的商业生产的经济可行性,用于合成甲酸,甲醇和合成气。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号